Подпишись и читай
самые интересные
статьи первым!

Спектральный анализ вывод. Спектральный анализ сигналов

Спектральный анализ подразделяют на несколько самостоятельных методов. Среди них выделяют: инфракрасную и ультрафиолетовую спектроскопию, атомно-абсорбционный, люминесцентный и флуоресцентный анализ, спектроскопию отражения и комбинационного рассеяния, спектрофотометрию, рентгеновскую спектроскопию, а также ряд других методов.

Абсорбционный спектральный анализ основан на изучении спектров поглощения электромагнитного излучения. Эмиссионный спектральный анализ проводится по спектрам испускания атомов, молекул или ионов, возбужденных различными способами.

Атомно-эмиссионный спектральный анализ

Спектральным анализом часто называют только атомно-эмиссионный спектральный анализ, который основан на исследовании спектров испускания свободных атомов и ионов в газовой фазе. Его проводят в области длин волн 150-800 нм. В источник излучения вводят пробу исследуемого вещества, после чего в нем происходит испарение и диссоциация молекул, а также возбуждение образовавшихся ионов. Они испускают излучение, которое фиксируется регистрирующим устройством спектрального прибора.

Работа со спектрами

Спектры проб сравнивают со спектрами известных элементов, которые можно найти в соответствующих таблицах спектральных линий. Так узнают состав анализируемого вещества. Количественный анализ подразумевает концентрации данного элемента в анализируемого веществе. Ее узнают по величине сигнала, например, по степени почернения или оптической плотности линий на фотопластинке, по интенсивности светового потока на фотоэлектрическом приемнике.

Виды спектров

Непрерывный спектр излучения дают вещества, находящиеся в твердом или жидком состоянии, а также плотные газы. В таком спектре нет разрывов, в нем представлены волны всех длин. Его характер зависит не только от свойств отдельных атомов, но и от их взаимодействия друг с другом.

Линейчатый спектр излучения характерен для веществ в газообразном состоянии, при этом атомы почти не взаимодействуют друг с другом. Дело в том, что изолированные атомы одного химического элемента излучают волны строго определенной длины волны.

При увеличении плотности газа спектральные линии начинают расширяться. Для наблюдения такого спектра используют свечение газового разряда в трубке или паров вещества в пламени. Если пропускать белый свет через неизлучающий газ, на фоне непрерывного спектра источника появятся темные линии спектра поглощения. Газ интенсивнее всего поглощает свет тех длин волн, которые он испускает в нагретом состоянии.

Современная наука и техника немыслимы без знания химического состава веществ, которые являются объектами деятельности человека. Минералы, найденные геологами, и новые вещества и материалы, полученные химиками, прежде всего характеризуются по химическому составу. Для правильного ведения технологических процессов в самых различных отраслях народного хозяйства необходимо точное знание химического состава исходного сырья, промежуточных и готовых продуктов.

Бурное развитие техники предъявляет все новые требования к методам анализа вещества. Еще сравнительно недавно можно было ограничиться определением примесей, присутствующих в концентрации до 10-2–10-3%. Появление и быстрое развитие в послевоенные годы промышленности атомных материалов, а также производства твердых, жаропрочных и других специальных сталей и сплавов потребовало повышения чувствительности аналитических методов до 10-4– 10-6%, так как было установлено, что присутствие примесей даже в таких малых концентрациях существенно влияет на свойства материалов и ход некоторых технологических процессов.

В последнее время в связи с развитием промышленности полупроводниковых материалов к чистоте веществ, а следовательно, и к чувствительности аналитических методов предъявляются еще более высокие требования – необходимо определять примеси, содержание которых совершенно ничтожно (10-7–10-9%). Конечно, подобная сверхвысокая чистота веществ нужна только в отдельных случаях, но в той или иной степени повышение чувствительности анализа стало необходимым требованием почти во всех областях науки и техники.

При производстве полимерных материалов концентрация примесей в исходных веществах (мономерах) была весьма большой – часто десятые доли и даже целое число процентов. Недавно обнаружено, что качество многих готовых полимеров очень сильно зависит от их чистоты. Поэтому в настоящее время исходные непредельные соединения и некоторые другие мономеры проверяют на присутствие примесей, содержание которых не должно превышать 10-2– 10-4%. В геологии все шире используются гидрохимические методы разведки рудных месторождений. Для их успешного применения необходимо определять соли металлов в природных водах при концентрации 10-4– 10-8 г/л и даже меньше.

Повышенные требования предъявляются в настоящее время не только к чувствительности анализа. Внедрение в производство новых технологических процессов обычно тесно связано с разработкой методов, обеспечивающих достаточно высокую скорость и точность анализа. Наряду с этим от аналитических методов требуется высокая производительность и возможность автоматизации отдельных операций или всего анализа. Химические методы анализа далеко не всегда отвечают требованиям современной науки и техники. Поэтому все шире внедряются в практику физикохимические и физические методы определения химического состава, которые обладают рядом ценных характеристик. Среди этих методов одно из главных мест по праву занимает спектральный анализ.

Благодаря высокой избирательности спектрального анализа можно с помощью одной и той же принципиальной схемы, на одних и тех же приборах анализировать самые различные вещества, выбирая в каждом отдельном случае только наиболее благоприятные условия для получения максимальной скорости, чувствительности и точности анализа. Поэтому несмотря на громадное число аналитических методик, предназначенных для анализа различных объектов, все они основаны на общей принципиальной схеме.

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Методы спектрального анализа делятся на эмиссионные (эмиссия – испускание) и абсорбционные (абсорбция – поглощение).

Рассмотрим схему эмиссионного спектрального анализа (рис. 6.8а). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис. 6.8.

а – эмиссионного: б – абсорбционного: 1 – источник света; 2 – осветительный конденсор; 3 – кювета для анализируемой пробы; 4 – спектральный аппарат; 5 – регистрация спектра; 6 – определение длины волны спектральных линий или полос; 7 качественный анализ пробы с помощью таблиц и атласов; 8 – определение интенсивности линий или полос; 9 – количественный анализ пробы по градуировочному графику; λ – длина волны; J – интенсивность полос

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов – спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Атомные спектры элементов состоят из отдельных линий, так как в излучении атомов имеются только некоторые определенные волны (рис. 6.9а). В излучении раскаленных твердых или жидких тел присутствует свет любой длины волны. Отдельные линии в спектральном аппарате сливаются друг с другом. Такое излучение имеет сплошной спектр (рис. 6.9е). В отличие от линейчатого спектра атомов, молекулярные спектры испускания веществ, которые не распались при высокой температуре, являются полосатыми (рис. 6.96). Каждая полоса образована большим числом близко расположенных линий.

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектров служат спектроскопы стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты – монохроматоры – позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

Рис. 6.9.

а – линейчатый; 6 – полосатый; видны отдельные линии, составляющие полосу; в – сплошной. Наиболее темным местам в спектре соответствует наибольшая интенсивность света (негативное изображение); λ – длина волны

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы , спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме ) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов – образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.

Схема проведения абсорбционного спектрального анализа (рис. 6.8б) отличается от уже рассмотренной схемы только в своей начальной части. Источником света служит нагретое твердое тело или другой источник сплошного излучения, т.е. излучения с любой длиной волны. Анализируемую пробу помещают между источником света и спектральным аппаратом. Спектр вещества составляют тс длины волн, интенсивность которых уменьшилась при прохождении сплошного света через это вещество (рис. 6.10). Спектр поглощения веществ удобно изображать графически, откладывая по оси абсцисс длину волны, а по оси ординат – величину поглощения света веществом.

Рис. 6.10.

а – фотографическое; б – графическое; I – спектр источника сплошного света; II – спектр того же излучения после прохождения через анализируемую пробу

Спектры поглощения получают с помощью спектральных аппаратов – спектрофотометров, в состав которых входят источник сплошного света, монохроматор и регистрирующее устройство.

В остальном схемы проведения абсорбционного и эмиссионного анализа совпадают.

Спектральный анализ по спектрам испускания или поглощения включает следующие операции.

  • 1. Получение спектра анализируемой пробы.
  • 2. Определение длины волны спектральных линий или полос. После этого с помощью таблиц или атласов устанавливают их принадлежность к определенным элементам или соединениям, т.е. находят качественный состав пробы.
  • 3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам или соединениям, что позволяет найти их концентрацию в анализируемой пробе по предварительно построенным с помощью эталонов градуировочным графикам, т.е. найти количественный состав пробы.

Весь процесс выполнения спектрального анализа состоит, как мы видели, из нескольких этапов. Эти этапы можно изучать последовательно, независимо друг от друга, а затем рассмотреть их взаимосвязь.

С помощью спектрального анализа можно определять как атомный (элементарный), так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентраций.

Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально. Например, относительно просто выполняется анализ смеси редкоземельных элементов или смеси инертных газов. С помощью спектрального анализа можно определять изомерные органические соединения с очень близкими химическими свойствами.

Методы атомного спектрального анализа, качественного и количественного, в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Следует отмстить, что широта и объем практических применений молекулярного спектрального анализа, особенно в последнее время, быстро и непрерывно растут. Это связано прежде всего с разработкой и выпуском спектрально-аналитической аппаратуры для этого метода.

Область использования молекулярного спектрального анализа охватывает главным образом органические вещества, хотя можно с успехом анализировать и неорганические соединения. Молекулярный спектральный анализ внедряется главным образом в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Чувствительность спектрального анализа очень высока. Минимальная концентрация определяемого вещества, которая может быть обнаружена и измерена спектральными методами, колеблется в широких пределах в зависимости от свойств этого вещества и состава анализируемой пробы. Прямым анализом при определении большинства металлов и ряда других элементов сравнительно легко достигается чувствительность 10-3–а для некоторых веществ даже 10-5–1-6%. И только в особо неблагоприятных случаях чувствительность уменьшается до 10-1–10-2%. Применение предварительного отделения примесей от основы пробы позволяет сильно (часто в тысячи раз) повысить чувствительность анализа. Благодаря высокой чувствительности атомный спектральный анализ широко применяется для анализа чистых и особо чистых металлов, в геохимии и почвоведении для определения микроконцентраций различных элементов, в том числе редких и рассеянных, в промышленности атомных и полупроводниковых материалов.

Чувствительность молекулярного спектрального анализа для различных веществ изменяется в еще более широких пределах. В ряде случаев с трудом удается определять вещества, содержание которых в анализируемом образце составляет проценты и десятые доли процента, но можно привести примеры и очень высокой чувствительности молекулярного анализа 10-7–10-8%. Точность атомного спектрального анализа зависит от состава и структуры анализируемых объектов. При анализе образцов, близких по своей структуре и составу, можно легко достигнуть высокой точности. Ошибка в этом случае не превышает ±1–3% по отношению к определяемой величине. Поэтому, например, точным является серийный спектральный анализ металлов и сплавов. В металлургии и машиностроении спектральный анализ стал в настоящее время основным аналитическим методом.

Значительно ниже точность анализа веществ, состав и структура которых сильно меняется от пробы к пробе, но в последнее время и в этой области положение заметно улучшилось. Стал возможным количественный спектральный анализ руд, минералов, горных пород, шлаков и тому подобных объектов. Хотя полностью задача еще не решена, количественный анализ неметаллических проб сейчас широко применяется во многих отраслях промышленности – в металлургии, геологии, при производстве огнеупоров, стекол и других видов продукции.

Относительная ошибка определения при атомном спектральном анализе мало зависит от концентрации. Она остается почти постоянной как при анализе малых примесей и добавок, так и при определении основных компонентов образца. Точность химических методов анализа существенно снижается при переходе к определению примесей. Поэтому атомный спектральный анализ точнее химического в области малых концентраций. При средних концентрациях (0,1–1%) определяемых веществ точность обоих методов примерно одинакова, но в области высоких концентраций точность химического анализа, как правило, выше. Молекулярный спектральный анализ дает обычно более высокую точность определения, чем атомный, и не уступает в точности химическому даже при больших концентрациях.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так, при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

С высокой скоростью проведения спектрального анализа тесно связана его большая производительность, что очень существенно при массовых анализах. Благодаря большой производительности и малому расходу реактивов и других материалов стоимость одного анализа при применении спектральных методов обычно мала, несмотря на значительные первоначальные затраты на приобретение спектральноаналитического оборудования. Больше того, как правило, чем выше первоначальные затраты и сложнее предварительная подготовка аналитической методики, тем быстрее и дешевле выполнение массовых анализов.

По своему существу спектральный анализ является приборным методом. При использовании современной аппаратуры число операций, требующих вмешательства спектроскописта, невелико. Установлено, что и эти оставшиеся операции могут быть автоматизированы. Таким образом, спектральный анализ позволяет подойти к полной автоматизации определения химического состава вещества.

Спектральный анализ является универсальным. С его помощью можно определять практически любые элементы и соединения в самых разнообразных твердых, жидких и газообразных аналитических объектах.

Для спектрального анализа характерна высокая избирательность. Это означает, что почти каждое вещество может быть качественно и количественно определено в сложной пробе, без ее разделения.

Спектральным анализом называют метод исследования химического состава различных веществ по их спектрам.

Анализ, проводимый по спектрам испускания, называют эмиссионным, а по спектрам поглощения - абсорбционным спектральным анализом.

В основе эмиссионного спектрального анализа лежат следующие факты:

1. Каждый элемент имеет свой спектр (отличается числом линий, их расположением и длинами волн), который не зависит от способов возбуждения.

2. Интенсивность спектральных линий зависит от концентрации элемента в данном веществе.

Для выполнения спектрального анализа вещества с неизвестным химическим составом необходимо осуществить две операции: заставить каким-то образом атомы этого вещества излучать свет с линейчатым спектром, затем разложить этот свет в спектр и определить длины волн наблюдаемых в нем линий. Сравнивая полученный линейчатый спектр с известными спектрами химических элементов таблицы Менделеева, можно определить, какие химические элементы имеются в составе исследуемого вещества. Путем сравнения интенсивности различных линий спектра можно определить и относительное содержание различных элементов в этом веществе.

Спектральный анализ может быть качественный и количественный.

Если исследуемое вещество находится в газообразном состоянии, то для возбуждения атомов вещества обычно применяется искровой разряд. Исследуемым газом заполняется трубка с двумя электродами на концах. На эти электроды подается высокое напряжение и в трубке возникает электрический разряд. Удары электронов, разгоняемых электрическим полем, приводят к ионизации и возбуждению атомов исследуемого газа. При переходах возбужденных атомов в нормальное состояние излучаются кванты света, характерные для данного элемента.

Для определения химического состава вещества, находящегося в твердом или жидком состоянии, по его спектру излучения необходимо сначала перевести исследуемое вещество в газообразное состояние и заставить каким-то образом этот газ испускать свет. Обычно для проведения спектрального анализа образцов вещества в твердом состоянии используют дуговой разряд. В плазме дуги происходит превращение вещества в пар, возбуждение и ионизация атомов. Электроды, между которыми зажигается дуговой разряд, обычно изготавливаются из исследуемого вещества (если он металл) или из графита или меди. Углерод и медь выбираются по той причине, что спектры излучения их атомов в видимой области имеют небольшое число линий и, следовательно, не создают серьезных помех для наблюдения спектра исследуемого вещества. В углубление нижнего электрода помещается порошок исследуемого вещества.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 531-532.

СПЕКТРАЛЬНЫЙ АНАЛИЗ (при помощи спектров испускания) имеет применение почти во всех отраслях хозяйства. Широко применяется в металлопромышленности для быстрого анализа железа, стали, чугуна, а также различных специальных сталей и готовых металлических изделий, для установления чистоты легких, цветных и драгоценных металлов. Большое применение имеет спектральный анализ в геохимии при изучении состава полезных ископаемых. В химической промышленности и близких к ней отраслях спектральный анализ служит для установления чистоты выпускаемой и применяемой продукции, для анализа катализаторов, различных остатков, осадков, мутей и промывных вод; в медицине - для открытия металлов в различных органических тканях. Ряд специальных задач, трудно разрешаемых или вовсе не разрешимых иным путем, решается при помощи спектрального анализа быстро и точно. Сюда относится, например, распределение металлов в сплавах, исследование в сплавах и минералах сульфидных и других включений; такого рода исследования иногда обозначаются термином локальный анализ .

Выбор того или другого типа спектрального аппарата с точки зрения достаточности его дисперсии производится в зависимости от цели и задач спектрального анализа. Для исследования платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt), а также Fe, Co, Ni, Сг, V, Mo, W, Ti, Mn, Zr, Re, Nb и Та наиболее пригодны кварцевые спектрографы с большей дисперсией, дающие для длин волн 4000-2200 Ӑ полоску спектра длиной по крайней мере 22 см. Для остальных элементов м. б. применены аппараты, дающие спектры длиной 7-15 см. Спектрографы со стеклянной оптикой в общем имеют меньшее значение. Из них удобны комбинированные приборы (например, фирмы Гильгера и Фюсса), которые по желанию можно применять в качестве спектроскопа и спектрографа. Для получения спектров применяются следующие источники энергии. 1) Пламя горящей смеси - водорода и кислорода, смеси кислорода и светильного газа, смеси кислорода и ацетилена или наконец воздуха и ацетилена. В последнем случае температура источника света доходит до 2500-3000°С. Пламя наиболее всего пригодно для получения спектров щелочных и щелочноземельных металлов, а также для таких элементов, как Сu, Hg и Тl. 2) Вольтова дуга . а) Обычная, гл. обр. постоянного тока, силой 5-20 А. С большим успехом она применяется для качественного анализа трудно сплавляемых минералов, которые вводятся в дугу в виде кусочков или тонко растертых порошков. Для количественного анализа металлов применение обычной вольтовой дуги имеет очень существенный недостаток, заключающийся в том, что поверхность анализируемых металлов покрывается пленкой окиси и горение дуги становится в конце концов неравномерным. Температура вольтовой дуги доходит до 5000-6000°С. б) Прерывистая дуга (Abreissbogen) постоянного тока силой 2-5 А при напряжении около 80 V. При помощи специального приспособления горение дуги прерывается 4-10 раз в сек. Этот способ возбуждения уменьшает окисление поверхности анализируемых металлов. При более высоком напряжении - до 220 V и силе тока 1-2 А - прерывистая дуга может применяться также и для анализа растворов. 3) Искровые разряды , получаемые при помощи индукционной катушки или, чаще, трансформатора постоянного или (предпочтительнее) переменного тока мощностью до 1 kW, дающего во вторичной цепи 10000-30000 V. Применяются три типа разрядов, а) Искровые разряды без емкости и индуктивности во вторичной цепи, называемые иногда дугой высокого напряжения (Hochspannungsbogen). Анализ жидкостей и расплавленных солей при помощи таких разрядов отличается большой чувствительностью. б) Искровые разряды с емкостью и индуктивностью во вторичной цепи, часто называемые также конденсированными искрами , представляют собой более универсальный источник энергии, пригодный для возбуждения спектров почти всех элементов (кроме щелочных металлов), а также газов. Схема включения дана на фиг. 1,

где R - реостат в первичной цепи, Тr- трансформатор переменного тока, С 1 - емкость во вторичной цепи I, S - переключатель для изменения индуктивности L 1 , U - синхронный прерыватель, LF - искрогаситель, F - рабочий искровой промежуток. В резонанс ко вторичной цепи I при помощи индуктивности и переменной емкости С 2 настраивается вторичная цепь II; признаком наличия резонанса является наибольшая сила тока, показываемая миллиамперметром А. Назначение вторичной цепи II синхронного прерывателя U и искрогасителя LF - делать электрические разряды возможно однообразными как по характеру, так и по числу в течение определенного промежутка времени; при обычных работах такие добавочные приспособления не вводятся.

При исследованиях металлов во вторичной цепи применяется ёмкость 6000-15000 см и индуктивность до 0,05-0,01 Н. Для анализа жидкостей во вторичную цепь иногда вводится водяной реостат с сопротивлением до 40000 Ом. Газы исследуются без индуктивности с небольшой емкостью. в) Разряды токов Тесла, которые осуществляются при помощи схемы, изображенной на фиг. 2,

где V - вольтметр, А - амперметр, Т - трансформатор, С - емкость, Т-Т - трансформатор Тесла, F - искровой промежуток, куда вводится анализируемое вещество. Токи Тесла применяются для исследований веществ, которые имеют невысокую точку плавления: различных растительных и органических препаратов, осадков на фильтрах и т. п. При спектральном анализе металлов в случае большого их количества они обычно сами являются электродами, причем им придается какая-либо форма, например, из указанных на фиг. 3,

где а - электрод из анализируемой толстой проволоки, b - из жести, с - согнутая тонкая проволока, d - диск, отрезанный от толстого цилиндрического стержня, е - форма, выпиливаемая из больших кусков литья. При количественном анализе необходимо иметь всегда одинаковую форму и размеры подвергающейся действию искр поверхности электродов. При небольшом количестве анализируемого металла можно воспользоваться оправой из какого-либо чистого металла, например, из золота и платины, в которой укрепляется анализируемый металл, как показано на фиг. 4.

Для введения в источник света растворов предложено довольно много способов. При работе с пламенем применяется распылитель Люндегорда, схематически изображенный на фиг. 5 вместе со специальной горелкой.

Продуваемый через распылитель ВС воздух захватывает испытуемую жидкость, наливаемую в количестве 3 -10 см 3 в углубление С, и в виде тонкой пыли относит ее в горелку А, где происходит смешение с газом. Для введения растворов в дугу, а также в искру применяются чистые угольные или графитовые электроды, на одном из которых делается углубление. Необходимо, однако, отметить, что очень трудно приготовить угли совершенно чистыми. Применяемые для очистки способы - попеременное кипячение в соляной и плавиковой кислотах, а также прокаливание в атмосфере водорода до 2500-3000°С - не дают углей, свободных от примесей, остаются (хотя и следы) Са, Mg, V, Ti, Al, Fe, Si, В. Удовлетворительной чистоты получаются также угли путем прокаливания их на воздухе при помощи электрического тока: через угольный стержень диаметром 5 мм пропускается ток силой около 400 А, и достигаемое таким путем сильное накаливание (до 3 000°С) оказывается достаточным для того, чтобы в течение нескольких секунд большинство загрязняющих угли примесей улетучилось. Существуют также такие способы введения растворов в искру, где сам раствор является нижним электродом, и искра проскакивает на его поверхность; другим электродом может служить какой-либо чистый металл. Примером такого устройства может служить изображенный на фиг. 6 жидкостный электрод Герляха.

Углубление, куда наливается испытуемый раствор, облицовывается платиновой фольгой или покрывается толстым слоем позолоты. На фиг. 7 изображен аппарат Хитчена, служащий также для введения растворов в искру.

Из сосуда А испытуемый раствор слабой струей поступает через трубку В и кварцевую насадку С в сферу действия искровых разрядов. Нижний электрод, впаянный в стеклянную трубку, прикрепляется к аппарату при помощи каучуковой трубки Е. Насадка С, изображенная на фиг. 7 отдельно, имеет с одной стороны вырез для стенания раствора. D - стеклянный предохранительный сосуд, в котором делается круглое отверстие для выхода ультрафиолетовых лучей. Сосуд этот удобнее делать кварцевым без отверстия. К верхнему электроду F, графитовому, угольному или металлическому, также приспосабливается предохраняющая от брызг пластинка. Для «дуги высокого напряжения», сильно накаливающей анализируемые вещества, Герлях при работе с растворами применяет электроды с охлаждением, как это схематически показано на фиг. 8.

На толстой проволоке (диаметром 6 мм) укрепляется при помощи пробки К стеклянная воронка G, куда помещаются кусочки льда. На верхнем конце проволоки укрепляется круглый железный электрод Е диаметром 4 см и высотой 4 см, на который накладывается платиновая чашечка Р; последняя должна легко сниматься для очистки. Верхний электрод также д. б. толстым во избежание расплавления. При анализе небольших количеств веществ - осадков на фильтрах, различных порошков и т. д. - можно пользоваться приспособлением, изображенным на фиг. 9.

Из испытуемого вещества и фильтровальной бумаги делается комочек, смачивается для лучшей проводимости раствором, например, NaCl, помещается на нижний электрод, состоящий иногда из чистого кадмия, заключенного в кварцевой (хуже стеклянной) трубочке; верхний электрод также является каким-либо чистым металлом. Для таких же анализов при работе с токами Тесла применяется специальная конструкция искрового промежутка, изображенная на фиг. 10 а и б.

В круглом шарнире К укрепляется в нужном положении алюминиевая пластинка Е, на которую накладывается стеклянная пластинка G, а на последнюю - препарат Р на фильтровальной бумаге F. Препарат смачивается какой-либо кислотой или раствором соли. Вся эта система представляет небольшой конденсатор. Для исследования газов применяются закрытые стеклянные или кварцевые сосуды (фиг. 11).

Для количественного анализа газов удобно пользоваться золотыми или платиновыми электродами, линии которых можно применить для сравнения. Почти все из упомянутых выше приспособлений для введения веществ в искру и дугу при работе укрепляются в специальных штативах. Примером может являться штатив Грамона, изображенный на фиг. 12:

при помощи винта D электроды одновременно раздвигаются и сдвигаются; винт Е служит для передвигания верхнего электрода параллельно оптической скамье, а винт С - для боковых поворотов нижнего электрода; для боковых поворотов всей верхней части штатива служит винт В; наконец при помощи винта А можно поднимать или опускать всю верхнюю часть штатива; Н - подставка для горелок, стаканов и пр. Выбор источника энергии для той или иной цели исследования можно сделать, руководствуясь следующей примерной таблицей.

Качественный анализ . При качественном спектральном анализе открытие какого-либо элемента зависит от многих факторов: от характера определяемого элемента, источника энергии, разрешающей способности спектрального аппарата, а также от чувствительности фотографических пластинок. Относительно чувствительности анализа можно сделать следующие указания. При работе с искровыми разрядами в растворах можно открывать 10 -9 -10 -3 %, а в металлах 10 -2 -10 -4 % исследуемого элемента; при работе с вольтовой дугой пределы открытия лежат около 10 -3 %. Абсолютное количество, которое м. б. открыто при работе с пламенем, составляет 10 -4 -10 -7 г, а при искровых разрядах 10 -6 -10 -8 г исследуемого элемента. Наибольшая чувствительность открытия относится к металлам и металлоидам - В, Р, С; меньше чувствительность для металлоидов As, Se и Те; галоиды, а также S, О, N в их соединениях совсем не м. б. открыты и м. б. открыты лишь в некоторых случаях в газовых смесях.

Для качественного анализа наибольшее значение имеют «последние линии», и при анализе задача заключается в наиболее точном определении длин волн спектральных линий. При визуальных исследованиях длины волн отсчитываются по барабану спектрометра; эти измерения можно считать лишь приблизительными, так как точность составляет обычно ±(2-З) Ӑ и в таблицах Кайзера этому интервалу ошибок могут отвечать около 10 спектральных линий, принадлежащих различным элементам, для λ 6000 и 5000 Ӑ и около 20 спектральных линий для λ ≈ 4000 Ӑ. Гораздо точнее определяется длина волн при спектрографическом анализе. В этом случае на спектрограммах при помощи измерительного микроскопа измеряется расстояние между линиями с известной длиной волны и определяемой; по формуле Гартмана находится длина волны последней. Точность таких измерений при работе с прибором, дающим полоску спектра длиной около 20 см, составляет ± 0,5 Ӑ для λ ≈ 4000 Ӑ, ± 0,2 Ӑ для λ ≈ 3000 Ӑ и ± 0,1 Ӑ для λ ≈ 2500 Ӑ. По длине волны в таблицах находят соответствующий элемент. Расстояние между линиями при обычных работах измеряется с точностью до 0,05-0,01 мм. Этот прием иногда удобно комбинировать со съемками спектров с так называемыми заслонками Гартмана, два типа которых изображены на фиг. 13, а и b; при помощи их щель спектрографа можно делать различной высоты. Фиг. 13, с схематически изображает случай качественного анализа вещества X - установление в нем элементов А и В. Спектры фиг. 13, d показывают, что в веществе Y кроме элемента А, линии которого обозначены буквой G, имеется примесь, линии которой обозначены z. При помощи этого приема в простых случаях можно выполнить качественный анализ, не прибегая к промеру расстояний между линиями.

Количественный анализ . Для количественного спектрального анализа наибольшее значение имеют линии, обладающие возможно большей концентрационной чувствительностью dI/dK, где I - интенсивность линии, а К - концентрация дающего ее элемента. Чем больше концентрационная чувствительность, тем точнее анализ. С течением времени разработан целый ряд методов количественного спектрального анализа. Эти методы следующие.

I. Спектроскопические методы (без фотографической съемки) почти все являются фотометрическими методами. Сюда относятся: 1) Метод Барратта . Одновременно возбуждаются спектры двух веществ - испытуемого и стандартного - видные в поле зрения спектроскопа рядом, один над другим. Ход лучей изображен на фиг. 14,

где F 1 и F 2 - два искровых промежутка, свет от которых проходит через призмы Николя N 1 и N 2 , поляризующие лучи во взаимно перпендикулярных плоскостях. При помощи призмы D лучи попадают в щель S спектроскопа. В его зрительной трубе помещается третья призма Николя - анализатор, - вращая которую добиваются одинаковой интенсивности двух сравниваемых линий. Предварительно при исследованиях стандартов, т. е. веществ с известным содержанием элементов, устанавливается зависимость между углом поворота анализатора и концентрацией, и по этим данным вычерчивается диаграмма. При анализе по углу поворота анализатора из этой диаграммы находится искомое процентное содержание. Точность метода ±10 %. 2) . Принцип метода заключается в том, что лучи света после призмы спектроскопа проходят через призму Волластона, где расходятся на два пучка и поляризуются во взаимно перпендикулярных плоскостях. Схема хода лучей показана на фиг. 15,

где S - щель, Р - призма спектроскопа, W - призма Волластона. В поле зрения получаются два спектра B 1 и В 2 , лежащие рядом, друг над другом; L - лупа, N - анализатор. Если вращать призму Волластона, то спектры будут передвигаться относительно друг друга, что позволяет совместить какие-либо две их линии. Например, если анализируется железо, содержащее ванадий, то совмещается линия ванадия с какой-либо близлежащей одноцветной линией железа ; затем, поворачивая анализатор, добиваются одинаковой яркости этих линий. Угол поворота анализатора, как и в предыдущем методе, является мерой концентрации искомого элемента. Метод особенно пригоден для анализа железа, спектр которого имеет много линий, что позволяет всегда найти линии, пригодные для исследований. Точность метода ± (3-7)%. 3) Метод Оккиалини . Если расположить электроды (например, анализируемые металлы) горизонтально и проектировать изображен из источника света на вертикальную щель спектроскопа, то как при искровых, так и при дуговых разрядах линии примесей м. б. открыты в зависимости от концентрации на большем или меньшем расстоянии от электродов. Источник света проектируется на щель при помощи специальной линзы, снабженной микрометрическим винтом. При анализе эта линза передвигается и вместе с ней передвигается изображение источника света до тех пор, пока какая-либо линия примеси в спектре исчезнет. Мерой концентрации примеси является отсчет по шкале линзы. В настоящее время этот метод разработан также и для работ с ультрафиолетовой частью спектра. Надо отметить, что таким же способом освещения щели спектрального аппарата пользовался Локиер и им был разработан метод количественного спектрального анализа, т. н. метод «длинных и коротких линий». 4) Прямое фотометрирование спектров . Описанные выше методы носят название визуальных. Люндегорд вместо визуальных исследований пользовался для измерения интенсивности спектральных линий фотоэлементом. Точность определения щелочных металлов при работе с пламенем достигала ± 5%. При искровых разрядах этот способ неприменим, так как они менее постоянны, чем пламя. Существуют также способы, основанные на изменении индуктивности во вторичной цепи, а также использующие искусственное ослабление света, попадающего в спектроскоп, до исчезновения в поле зрения исследуемых спектральных линий.

II. Спектрографические методы . При этих методах исследуются фотографические снимки спектров, причем мерой интенсивности спектральных линий является почернение, даваемое ими на фотографической пластинке. Интенсивность оценивается или глазом, или фотометрически.

А . Методы без применения фотометрии . 1) Метод последних линий . При изменении концентрации какого-либо элемента в спектре изменяется число его линий, что дает возможность при неизменных условиях работы судить о концентрации определяемого элемента. Фотографируется ряд спектров веществ с известным содержанием интересующего компонента, на спектрограммах определяется число его линий и составляются таблицы, в которых указывается, какие линии видны при данных концентрациях. Эти таблицы служат дальше для аналитических определений. При анализе на спектрограмме определяется число линий интересующего элемента и по таблицам находится процентное содержание, причем метод дает не однозначную его цифру, а границы концентраций, т. е. «от-до». Наиболее достоверно возможно различить концентрации, отличающиеся друг от друга в 10 раз, например, от 0,001 до 0,01%, от 0,01 до 0,1% и т. д. Аналитические таблицы имеют значение лишь для вполне определенных условий работы, которые в различных лабораториях могут очень сильно различаться; кроме того, требуется тщательное соблюдение постоянства условий работы. 2) Метод сравнительных спектров . фотографируется несколько спектров анализируемого вещества А + х% В, в котором определяется содержание х элемента В, и в промежутках между ними на той же фотографической пластинке -спектры стандартных веществ А + а% В, А + b% В, А + с% В, где а, b, с - известное процентное содержание В. На спектрограммах по интенсивности линий В определяется, между какими концентрациями заключается значение х. Критерием постоянства условий работы является равенство интенсивности на всех спектрограммах какой-либо близлежащей линии А. При анализе растворов в них добавляется одинаковое количество какого-либо элемента, дающего линию близко к линиям В, и тогда о постоянстве условий работы судят по равенству интенсивности этих линий. Чем меньше разница между концентрациями а, Ь, с, … и чем точнее достигнуто равенство интенсивности линий А, тем точнее анализ. А. Райс, например, применял концентрации а, b, с, ... , относящиеся друг к другу, как 1: 1,5. К методу сравнительных спектров примыкает метод «подбора концентраций» (Testverfahren) по Гюттигу и Турнвальду, применимый только к анализу растворов. Он заключается в том, что если в двух растворах, содержащих а% А и х% А (х больше или меньше а), что сейчас же можно определить по их спектрам, то прибавляют в какой-либо из этих растворов такое количество n элемента А, чтобы интенсивность его линий на обоих спектрах стала одинаковой. Тем самым определится концентрация х, которая будет равна (а ± n)%. Можно также прибавить в анализируемый раствор какой-либо другой элемент В до равенства интенсивности определенных линий А и В и по количеству В оценить содержание А. 3) Метод гомологических пар . В спектре вещества А + а% В линии элементов А и В не являются одинаково интенсивными и, если этих линий достаточное количество, можно найти две такие линии А и В, интенсивность которых будет одинакова. Для другого состава А + b% В одинаковыми по интенсивности будут другие линии А и В и т. д. Эти две одинаковые линии называются гомологическими парами. Концентрации В, при которых осуществляется та или иная гомологическая пара, называются фиксирующими пунктами этой пары. Для работы по этому методу требуется предварительное составление таблиц гомологических пар при помощи веществ известного состава. Чем полнее таблицы, т. е. чем больше они содержат гомологических пар с фиксирующими пунктами, отличающимися как можно меньше друг от друга, тем точнее анализ. Этих таблиц составлено довольно большое количество, причем они могут иметь применение в любой лаборатории, т. к. точно известны условия разрядов при их составлении и эти условия м. б. совершенно точно воспроизведены. Достигается это при помощи следующего простого приема. В спектре вещества А + а% В выбираются две линии элемента А, интенсивность которых очень сильно меняется в зависимости от величины самоиндукции во вторичной цепи, именно одна дуговая (принадлежащая нейтральному атому) и одна искровая линия (принадлежащая иону). Эти две линии называются фиксирующей парой . Путем подбора величины самоиндукции линии этой пары делаются одинаковыми и составление ведется именно при этих условиях, всегда указываемых в таблицах. При таких же условиях проводится и анализ, и по осуществлению той или иной гомологической пары находится процентное содержание. Имеется несколько модификаций метода гомологических пар. Из них главнейшим является метод вспомогательного спектра , применяемый в том случае, когда элементы А и В не обладают достаточным количеством линий. В этом случае линии спектра элемента А определенным образом связываются с линиями другого, более пригодного элемента G, и роль А начинает играть элемент G. Метод гомологических пар разработан Герляхом и Швейтцером. Он применим как к сплавам, так и к растворам. Его точность в среднем около ±10%.

В . Методы с применением фотометрии . 1) Метод Барратта . Фиг. 16 дает представление о методе.

F 1 и F 2 - два искровых промежутка, при помощи которых одновременно возбуждаются спектры стандартного и анализируемого вещества. Свет проходит через 2 вращающихся сектора S 1 и S 2 и при помощи призмы D образует спектры, которые расположены один над другим. Путем подбора вырезок секторов линии исследуемого элемента получают одинаковую интенсивность; концентрация определяемого элемента вычисляется из соотношения величин вырезок. 2) является аналогичным, но с одним искровым промежутком (фиг. 17).

Свет от F разделяется на два пучка и проходит через секторы S 1 и S 2 , при помощи ромба Гюфнера R две полоски спектра получаются одна над другой; Sp - щель спектрографа. Вырезки секторов изменяются до получения равенства интенсивности линии примеси и какой-либо близлежащей линии основного вещества и по соотношению величин вырезок высчитывается %-ное содержание определяемого элемента. 3) При применении в качестве фотометра вращающегося логарифмического сектора линии получают на спектрограммах клинообразный вид. Один из таких секторов и его положение относительно спектрографа при работе изображены на фиг. 18, а и б.

Вырезка сектора подчиняется уравнению

- lg Ɵ = 0,3 + 0,2l

где Ɵ - длина дуги в частях полной окружности, находящаяся на расстоянии I, измеренном в мм по радиусу от его конца. Мерой интенсивности линий является их длина, т. к. с изменением концентрации элемента длина его клинообразных линий также изменяется. Предварительно по образцам с известным содержанием строится диаграмма зависимости длины какой-либо линии от %-ного содержания; при анализе на спектрограмме измеряется длина той же линии и по диаграмме находится процентное содержание. Имеется несколько различных модификаций этого метода. Следует указать на модификацию Шейбе, применявшего т. н. двойной логарифмический сектор. Вид этого сектора изображен на фиг. 19.

Линии исследуются затем при помощи специального аппарата. Точность, достижимая при помощи логарифмических секторов, ±(10-15)%; модификация Шейбе дает точность ±(5-7)%. 4) Довольно часто применяется фотометрирование спектральных линий при помощи свето- и термоэлектрических спектрофотометров самых различных конструкций. Удобными являются термоэлектрические фотометры, выработанные специально для целей количественного анализа. Для примера на фиг. 20 приведена схема фотометра по Шейбе:

L– постоянный источник света с конденсором К, М – фотографическая пластинка с исследуемым спектром, Sp - щель, О 1 и О 2 - объективы, V - затвор, Th - термоэлемент, который присоединяется к гальванометру. Мерой интенсивности линий является отклонение стрелки гальванометра. Реже пользуются саморегистрирующими гальванометрами, дающими запись интенсивности линий в виде кривой. Точность анализа при применении этого типа фотометрии составляет ±(5-10)%. При сочетании с другими методами количественного анализа точность м. б. повышена; так, например, метод трех линий Шейбе и Шнеттлера, являющийся сочетанием метода гомологических пар и фотометрических измерений, в благоприятных случаях может дать точность ±(1-2)%.

Министерство образования и науки
Республики Казахстан

Карагандинский Государственный Университет
имени Е.А. Букетова

Физический факультет

Кафедра оптики и спектроскопии

Курсовая работа

на тему:

Спектры. С пектральный анализ и его применение.

Подготовил:

студент группы ФТРФ-22

Ахтариев Дмитрий.

Проверил:

преподаватель

Кусенова Асия Сабиргалиевна

Караганды – 2003г. План

Введение

1. Энергия в спектре

2. Виды спектров

3. Спектральный анализ и его применение

4. Спектральные аппараты

5. Спектр электромагнитных излучений

Заключение

Список использованной литературы

Введение

Исследование линейчатого спектра вещества позволяет определить, из каких химических элементов оно состоит и в каком количестве содержится каждый элемент в данном веществе.

Количественное содержание элемента в исследуемом образце определяется путем сравнения интенсивности отдельных линий спектра этого элемента с интенсивностью линий другого химического элемента, количественное содержание которого в образце известно.

Метод определения качественного и количественного состава вещества по его спектру называется спектральным анализом. Спектральный анализ широко применяется при поисках полезных ископаемых для определения химического состава образцов руды. В промышленности спектральный анализ позволяет контролировать составы сплавов и примесей, вводимых в металлы для получения материалов с задаными свойствами.

Достоинствами спектрального анализа являются высокая чувствительность и быстрота получения результатов. С помощью спектрального анализа можно обнаружить в пробе массой 6*10 -7 г присутствие золота при его массе всего 10 -8 г. Определение марки стали методом спектрального анализа может быть выполнено за несколько десятков секунд.

Спектральный анализ позволяет определить химический состав небесных тел, удаленных от Земли на расстояния в миллиарды световых лет. Химический состав атмосфер планет и звезд, холодного газа в межзвездном пространстве определяется по спектрам поглощения.

Изучая спектры, ученые смогли определить не только химический состав небесных тел, но и их температуру. По смещению спектральных линий можно определять скорость движения небесного тела.

Энергия в спектре.

Источник света должен потреблять энергию. Свет - это электромагнитные волны с длиной волны 4*10 -7 - 8*10 -7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией.

Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеитом (органический краситель) световой пучок, пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено - желтым светом, т. е. светом большей длины волны, чем у фиолетового света.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения - тепловые.

Распределение энергии в спектре. Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.

Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: ђv = c.

Плотность потока электромагнитного излучения, или интенсивность /, определяется энергией &W, приходящейся на все частоты. Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.

Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Av.

Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т. е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.

Обычный термометр имеет слишком малую чувствительность для того, чтобы его можно было с успехом использовать в таких опытах. Нужны более чувствительные приборы для измерения температуры. Можно взять электрический термометр, в котором чувствительный элемент выполнен в виде тонкой металлической пластины. Эту пластину надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны.

Чувствительную к нагреванию пластину прибора следует поместить в то или иное место спектра. Всему видимому спектру длиной l от красных лучей до фиолетовых соответствует интервал частот от v кр до у ф. Ширине соответствует малый интервал Av. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на интервал частот Av. Перемещая пластину вдоль спектра, мы обнаружим, что большая часть энергии приходится на красную часть спектра, а не на желто-зеленую, как кажется на глаз.

По результатам этих опытов можно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. Спектральная плотность интенсивности излучения определяется по температуре пластины, а частоту нетрудно найти, если используемый для разложения света прибор проградуирован, т. е. если известно, какой частоте соответствует данный участок спектра.

Откладывая по оси абсцисс значения частот, соответствующих серединам интервалов Av, а по оси ординат спектральную плотность интенсивности излучения, мы получим ряд точек, через которые можно провести плавную кривую. Эта кривая дает наглядное представление о распределении энергии и видимой части спектра электрической дуги.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса