Подпишись и читай
самые интересные
статьи первым!

Скопления галактик. Галактики, скопления галактик и квазары

О том, что существуют другие галактики, астрономы знали уже в начале XX века. Несмотря на то, что первые из открытых галактик были уже известны ученым, поначалу их называли туманностями, приписывая их к нашей галактике - Млечный Путь. Ученые предполагали, что эти туманности могут представлять собой отдельные звездные системы. Однако такие гипотезы не выдерживали критики со стороны научного мира. Так складывалось из-за несовершенства техники для наблюдений.

Исследования галактик

В 1922 году астроном из Эстонии Эрнст Эпик смог рассчитать приблизительное расстояние, которое отделяет Солнечную систему от туманности Андромеды. Данные, которые получил астроном, составляют 0,6 от тех цифр, которыми располагают ученые сейчас - а это даже более точный расчет, чем у Э. Хаббла. Сам Эдвин Хаббл в 1924 году воспользовался самым огромным в то время телескопом. Его диаметр составлял 254 см. Хаббл также сделал вычисления расстояния до Андромеды. Сейчас ученые располагают более точными данными, которые в три раза меньше сделанных Хабблом - однако все же это расстояние настолько велико, что туманность никак не может быть частью нашей галактики. Так туманность Андромеды стала первой отдельной галактикой.

Скопления галактик

Подобно звездам, галактики образуют группы разной численности. При этом такое свойство выражено у них намного в большей степени, чем у звезд. Большинство звезд не являются частями скопления, входя в состав общего поля нашей галактики. Группа галактик, в состав которой входит Млечный путь (местная галактика) насчитывает 40 галактик. Подобное группирование очень распространено на просторах Вселенной.

Группы галактик, доступные для наблюдения

Известная часть скопления галактик называется «Метагалактика» - ее можно наблюдать с помощью астрономических методов. В состав Метагалактики входит порядка одного миллиарда галактик, наблюдение которых доступно при помощи телескопов. Млечный Путь является одной из которая является частью Метагалактики. Наша галактика и еще порядка 1,5 десятка галактик являются частью галактической группы, называемой местной группой галактик.

Возможности исследовать Метагалактику появились, главным образом, в конце ХХ века. Астрономы выяснили, что в находятся космическое и электромагнитное излучение, отдельные звезды, а также межгалактический газ. Благодаря научным достижениям стало возможным изучать галактики разных типов - квазары, радиогалактики.

Свойства Метагалактики

Иногда астрономы любят называть Метагалактику "Большой Вселенной". С улучшением техники и телескопов все большая ее часть становится доступной для наблюдения. Астрономы считают, что Млечный путь и ближайшие 10-15 галактик являются членами одного галактического скопления. В Метагалактике очень распространены скопления галактик, численность которых составляет от 10 до нескольких десятков членов. Такие группы плохо различимы астрономами на больших расстояниях. Причина в том, что карликовые галактики не доступны для наблюдения, а гигантских в подобных группах, как правило, всего несколько.

Согласно эйнштейновской теории относительности, большие массы способны искривлять вокруг себя пространство. Поэтому положения геометрии Евклида в этом пространстве не оправдываются. Только в огромном масштабе Метагалактики можно увидеть различия между двумя научными подходами - ньютоновской механикой и механикой Эйнштейна. В Метагалактике также действует так называемый закон красного смещения. Это значит, что все находящиеся около нас галактики удаляются в разные стороны. Причем чем дальше они удаляются, тем больше становится их скорость.

Типы галактик по форме

Галактические скопления могут быть рассеянными, или иметь шарообразную форму. В их состав могут входить десятки и даже тысячи различных галактик. Самая близкая к нам галактика расположена в созвездии Девы и удалена на расстояние 10 миллионов парсеков. Скопления галактик, называемые правильными, имеют сферическую форму. Входящие в их состав галактики имеют тенденцию концентрироваться в одной точке - центре галактического скопления. Правильные скопления и без того отличаются высокой плотностью галактик, но в их центре концентрация достигает максимума. Однако есть у правильных скоплений и различия, проявляемые, главным образом, в их плотности и различной численности входящих в их состав галактик.

Галактики с самой большой плотностью

Например, группа галактик Волосы Вероники отличается большим количеством составляющих, а галактики, входящие в состав Пегаса - плотностью. Особенно высока она в центральном районе Пегаса. Здесь плотность достигает 2 тыс. галактик на 1 кубический мегапарсек. Соседние галактики практически касаются друг друга, а их плотность практически в 40 тысяч раз выше, чем плотность в Метагалактике. Также высокая плотность свойственна группам галактик Северная Корона.

Откуда взялись галактики?

Пока ученые не могут дать точного ответа на этот вопрос. Однако по теории Большого взрыва, молодая Вселенная была полна водородом и гелием. Из этого густого облака под действием темной материи (а впоследствии и гравитационных сил) стали формироваться первые звезды и звездные скопления.

Когда во Вселенной появились первые звезды?

По мнению некоторых астрономов, звезды появились достаточно рано - уже через 30 млн. лет после Большого взрыва. Другие убеждены, что эта цифра составляет 100 млн. лет. Исследования при помощи современной техники показывают, что светила формировались одновременно по нескольку штук - часто это количество доходило даже до сотен. Этому способствовали гравитационные силы, оказывающие влияние на заполнявший Вселенную газ. Газовые облака закручивались в диски, и в них постепенно формировались уплотнения, затем становившиеся звездами. В юной Вселенной первые звезды были действительно гигантских размеров - ведь для них было много «строительного материала».

Самое большое скопление галактик, открытое астрономами, называется SPT-CL J0546-5345. Ее масса практически равна массе 800 триллионов Солнц. Обнаружить гигантскую галактику ученые смогли при помощи Сюняева-Зельдовича - он заключается в том, что температура микроволнового излучения падает при его взаимодействии с гигантскими объектами Вселенной. Это скопление удалено от нас на 7 млрд. световых лет. Иными словами, астрономы наблюдают его таким, какое оно было 7 млрд. лет назад - а это через 6,7 млрд. лет после Большого взрыва.

В дальних просторах Вселенной было обнаружено еще одно скопление галактик, образующее обособленную космическую систему - ACT-CL J0102-4915. Эту огромную группу галактик астрономы прозвали El Gordo, что в переводе с испанского означает «толстяк». Ее расстояние до Земли - 9,7 млрд. световых лет. Масса этой группы галактик превышает массу Солнца в 3 миллиона миллиардов.

Волосы Вероники

Скопление Волосы Вероники - это одна из самых интересных галактических групп в Метагалактике. Оно насчитывает порядка нескольких тысяч галактик. Расположены они в нескольких сотнях миллионов световых лет от Млечного пути. Большинство галактик являются эллиптическими. Волосы Вероники не отличаются яркими звездами - даже альфа, называемая Диадемой, невелика. В этом созвездии можно наблюдать скопление слабо светящихся звезд «Кома», что в переводе с латинского означает «волосы». Древнегреческий ученый Эратосфен называл это скопление «Волосами Ариадны». Птолемей же относил его к составу Льва.

Одна из самых красивых галактик созвездия - NGC 4565, или «Игла». С поверхности нашей планеты видна с ребра. Находится она в 30 млн. световых лет от Солнца. А диаметр галактики составляет более 100 тыс. световых лет. В Волосах Вероники есть и две взаимодействующие галактики - NGC 4676, или, как еще называют эту группу, «Мыши». Они удалены от Земли на расстояние 300 млн. световых лет. Исследования показали, что уже однажды эти галактики прошли друг через друга. Ученые предполагают, что «Мыши» будут сталкиваться еще не раз, до тех пор, пока не превратятся в одну галактику.

ЗВЁЗДНЫЕ СКОПЛЕНИЯ

Скопление
Звёздные скопления бывают двух типов:

открытые скопления , например Плеяды, насчитывают от нескольких сотен до нескольких тысяч свободно расположенных молодых звёзд;
в шаровых скоплениях , таких как Омега Центавра, звёзды располагаются очень компактно. Они могут содержать до миллиона очень старых звёзд и, возможно, являются самыми древними образованиями нашей Галактики.

ПЛЕЯДЫ

Открытое скопление М45 в созвездии Тельца .
Диаметр центра - 7 световых лет.

Общий диаметр - 40 световых лет.

Расстояние до Солнца - 410 световых лет.

Концентрация: 3000 звёзд на 0.05 кубических световыхлет.

СКОПЛЕНИЕ ГЕРКУЛЕСА

Шаровое скопление М13 в созвездии Геркулеса.

Диаметр - 160 световых лет.

Расстояние до Солнца - 23 500 световых лет.

Концентрация в центре - 1 звезда на кубический световой год.

ГАЛАКТИЧЕСКИЕ СКОПЛЕНИЯ

Скопление - группа небесных тел одной природы, связанных силами гравитационного взаимодействия. Различают галактические скопления и звёздные скопления, находящиеся в пределах одной галактики.
ГМП относится к маленькому скоплению, известному под названием Локальная Группа. Некоторые галактические скопления объединены в сверхскопления.

В Сферических Галактиках нет спиральных рукавов, они более-менее плоские и их часто объединяют в одну группу со спиральными Галактиками. К сферическим Галактикам относится шаровая Галактика NGC 5128 (созвездие Кентавра) или М 87 (созвездие Девы). Они привлекают к себе внимание как мощнейшие источники радиоизлучения.

Эллиптические Галактики выглядят как несколько приплюснутые сферы и содержат мало газа и пыли. Их диаметр изменяется от 30.000 до 300.000 световых лет: такие Галактики составляют 10-15% от всех видимых Галактик во Вселенной. Эти Галактики выглядят как эллипсы с разной степенью сжатия. Среди них есть Галактики, похожие на линзу, и почти шаровые звёздные системы. Встречаются и гиганты, и карлики. Примерно четверть из наиболее ярких Галактик относят к числу эллиптических. Для многих из них характерен красноватый цвет.


Сферические / эллиптические: самые круглые - Е0, самые сплющенные Е7;
SО - промежуточные между спиральными и эллиптическими Галактиками;

спиральные: Sa - с короткими рукавами, толстыми спиралями, у Sc - ветви длинные, тонкие;

спиральные пересечённые", с перемычкой, из концов которой начинаются рукава (SВа, SВb, SВс);

неправильные Галактики (Irr).

Спиральная Галактика имеет форму диска с утолщением в центре - ядром. Из ядра исходят спиральные рукава, более или менее плотно прилегающих друг к другу. Ядро в основном состоит из старых звёзд, в то время как рукава состоят по большей части из молодых звёзд и газа, в основном - водорода. Все ветви - а их может быть одна, две или несколько - лежат в плоскости, совпадающей с плоскостью вращения Галактики. Поэтому Галактика имеет вид сплющенного диска. Спиральные Галактики окружены обширным тёмным, почти сферическим ореолом, который также состоит из старых звёзд.
Спиральные Галактики встречаются чаще других. К их числу относятся Галактика Млечного Пути, Галактика в Андромеде (М31), Галактика в Треугольнике (М33).

СОМБРЕРО

Галактика М104 в созвездии Девы.

Диаметр - около 110.000 световых лет.

Расстояние до Солнца – 40.000.000 световых лет.

ГОНЧИЕ ПСЫ

Ширина - около 60.000 световых лет.

Расстояние до Солнца – 35.000.000 световых лет.

Тип: гигантская спиральная галактика.

М 31 ТУМАННОСТЬ АНДРОМЕДЫ

Диаметр - около 150.000 световых лет. Расстояние до Солнца – 2.400.000 световых лет. Тип: гигантская спиральная галактика.

ГАЛАКТИКА МЛЕЧНОГО ПУТИ (ГМП)

17 млрд. лет назад началась образовываться наша ГАЛАКТИКА - МЛЕЧНЫЙ ПУТЬ. Спиральная Галактика Млечного Пути - одна из множеств Галактик разной формы, существующих во Вселенной. См.

Магеллановы Облака - это карликовые Галактики. Наибольшие угловые их размеры на звёздном небе 8°для Большого Магелланова Облака (БМО) и 4° для Малого Магеланова Облака (ММО). Звёзды Магелановых Облаков сходны со звёздами спиральных рукавов нашей Галактики, которые для земного наблюдателя видятся как серебристое сияние Млечного Пути. В Магелановых Облаках много молодых и горячих ярких звёзд, очень много голубых сверхгигантов чрезвычайно высокой светимости.


БОЛЬШОЕ МАГЕЛАНОВО ОБЛАКО (БМО)

Галактика LMC в созвездии Золотой Рыбы.

Диаметр – 26.000 световых лет.

Расстояние до Солнца - 16. 000 световых лет.

На современных звёздных картах БМО попадает в созвездие Столовой Горы и Золотой Рыбы.

S Золотой Рыбы в БМО - ярчайшая из известных на сегодняшний день во Вселенной.

Тарантул - световая диффузная туманность БМО. Это самая крупная из известных туманностей в Местной группе Галактик. Внутри этой туманности с "неистовой скоростью" происходит процесс рождения новых звёзд. В центре туманности находится рассеянное скопление очень горячих голубых звёзд.

МАЛОЕ МАГЕЛАНОВО ОБЛАКО (ММО)

Галактика SMC в созвездии Тукана.

Диаметр - 16.000 световых лет.

Расстояние до Солнца – 212.000 световых лет.

Тип: галактика неправильной формы.

На современных звёздных картах ММО попадает в созвездие Тукана.

МЕТАГАЛАКТИКА

ЛОКАЛЬНАЯ ГРУППА - скопление, насчитывающее около 30 Галактик, среди которых Млечный Путь, Магелановы Облака и туманность Андромеды. Имеет неправильную форму, расстояние между наиболее удалёнными точками скопления оценивается в 6 млн. световых лет.

Ячеисто-сотовая структура Метагалактики

Исходя из выше сказанного, не трудно объяснить видимые в Метагалактике образования, напоминающие пчелиные соты с размерами ячеек в 100-300 миллионов световых лет. Характерной особенностью ячеисто-сотовой структуры состоит в том, что внутренняя полость ячеек (войды) выглядит практически пустой, а все галактики и их скопления собраны в кластеры или вдоль так называемых "стенок", оконтуривающих ячейки.

Образование додекаэдра с внутренними шестнадцатью полостями формируется после второго этапа квантования. Но квантование пространства на этом этапе не заканчивается. Оно продолжится в каждой из вновь созданной хронооболочке много раз, образуя все новые и новые миллиарды систем по фрактальному типу.

Войды

В додекаэдрической структуре первого порядка образуются более мелкие додекаэдрические структуры второго порядка и т. д. Возможно, что они дополняются икосаэдрическими структурами, т.к. оба многогранника (додекаэдр и икосаэдр) легко перестраиваются друг в друга. Икосаэдро-додекаэдрическая структура хронооболочек образует крупномасштабную ячеисто-сотовую структуру Метагалактики. Скопления и сверхскопления галактик образуются в икосаэдро-додекаэдрических структурах меньшего уровня.

Вселенная в момент инфляции представляет собой псевдопространство, заполненное невидимыми ячейками, наподобие пчелиных сот, где в качестве ячеек находились раздувающиеся пузыри хронооболочек. Причем каждая такая ячейка содержала внутри себя будущее скопление или сверхскопление галактик, исполненных внутренними невидимыми хрональными оболочками будущих галактик и звездных систем по матрешечному типу, образуя фракталы Вселенной. Каждая хронооболочка в свернутом состоянии представляет собой гравитационный веерный диполь в связанном состоянии. Как только к такому диполю начинает поступать энергия, он «раскрывается», преобразуясь в пространство и материю.

Предел дифференциации по горизонтали определяется критической плотностью образующегося вещества. Раскрывающиеся хронооболочки стремительно увеличивают свое пространство, но вещество начинает формироваться только тогда, когда выделенная энергия превысит некоторое предельное значение. Поэтому в самый начальный момент инициации диполя плотность вещества равна нулю. Когда плотность вещества достигает порядка примерно 10-20 г/см3, начинается следующий этап в дифференциации - вертикальный. Он характеризуется тем, что новая образующаяся подсистема относится не к нулевому, а к первому модулю ИСМ, что позволяет ей занимать одно и то же место в пространстве. Т.е. пространства нулевого и первого модуля становятся пересекающимися множествами.

Пределом дифференциации Метагалактики являются галактики, поскольку в их формировании явно выражена вертикальная дифференциация. Эволюционно развитые галактики представляют собой двух-системные образования. К ним относятся спиральные галактики, в которых помимо хронооболочки нулевого модуля – сферической подсистемы, существует хронооболочка первого модуля – дисковая подсистема галактики.


Таким образом, в качестве элементарной структурной единицы Метагалактики будем считать галактику. Точно так же в строении обычного вещества его пределом являются молекулы. Потому что на уровне молекул начинается новая ступень в организации материи. Благодаря одинаковости молекул, мы видим вещество однородным, с присущим только ему определенными физико-химическими свойствами. Так же и в Метагалактике. Вся она состоит их плотной упаковки хронооболочек галактик, которые играют ту же роль, что и молекулы в веществе. В этом смысле Метагалактика супероднородна, т.к. вся она состоит из одних и тех же структурных элементов – галактик, играющих роль «молекул» в «супервеществе» Вселенной.

Циклические этапы в Метагалактике

Если рассматривать Метагалактику с точки зрения циклических этапов, т.е. ее относительного возраста, то можно отметить, что мы видим ранний этап развития Метагалактики, т.е. видим ее молодой. О чем свидетельствует интенсивное скопление галактик вдоль ребер додекаэдра, образующих так называемые «стенки» скоплений и сверхскоплений. Но это несколько упрощенный взгляд, на самом деле ситуация несколько сложнее. Когда мы наблюдаем другие галактики, то мы смотрим не только в даль, но и в прошлое, что связано с конечностью скорости света. Поэтому такое представление связано с тем, что свет, дошедший до нас от этих космических объектов, отправился тогда, когда додекаэдр только формировался.

Объяснение этому факту можно найти в следующем. Можно предположить, что в момент инфляции хронооболочка Вселенной дробилась «бессчетное» количество раз. Одновременно образовались миллиарды и миллиарды хронооболочек галактик, заполнившие собой всю Вселенную. Хронооболочки галактик образовались одновременно, но их количество конечно. В первый момент все хронооболочки представляют собой гравитационные диполи в свернутом виде. Все одновременно развернуться они не могут, т.к. находятся в неравных условиях. Раньше всего себя проявят те галактики, к которым энергия поступает интенсивнее всего. А это происходит вдоль ребер додекаэдра. Также легче «зажигаются» звезды галактик на периферии системы, т.е. там, где нет такого сильного давления, как в центре.

Поэтому все видимое вещество наблюдается вдоль «стенок» или «сшивок» между собой хронооболочек. Еще раз поясню, это связано с тем, что, во-первых, в местах «сшивки» хронооболочек амплитуда выделяющейся энергии возрастает за счет суммирования двух потоков обеих хронооболочек, текущих в одном направлении, что помогает звездообразовательному процессу. Во-вторых, раздвигание пространства на краю хронооболочки происходит легче и проще, чем в ее середине. Поэтому галактики на периферии проявляются значительно раньше, чем внутри. Перемещение звездообразования происходит от периферии к центру хронооболочки. Чем старше возраст (цикл), тем кучнее скопления галактик в центре первичной хронооблочки.


В результате чего в Метагалактике мы наблюдаем кластеры и войды (пустоты). Это достаточно хорошо видно по распределению галактик и их скоплений, т.е. "светящегося вещества". Практически весь "свет" находится в филаментах. В местах пересечения этих волокон располагаются сверхскопления. А в войдах - пусто. Большие войды занимают около 50 процентов объема Метагалактики. Поэтому на данном этапе развития с войдами связаны центральные области сфер хронооболочек высших уровней, в которых подсистемы внутренних хронооболочек находятся пока в виде свернутых диполей.

По мере того, как время жизни этих «первых» галактик вдоль ребер додекаэдра будет заканчиваться, они будут стареть и умирать. Зато на смену им будут «приходить» (проявляться) новые галактики, которые находятся ближе к центру сфер додекаэдра. Звездообразование постепенно будет перемещаться от ребер додекаэдра к центру его граней и далее к центру сферы хронооболочки. Поэтому по мере взросления Метагалактики войды будут «заполняться» все новыми и новыми галактиками, в то время как вдоль ребер додекаэдров галактики будут умирать и гаснуть. Следовательно, на более позднем этапе мы бы увидели шаровые сверхскопления галактик, не на границе сферических оболочек или гранях додекаэдра, а внутри пространственных сфер, расположенных на приблизительно одинаковых расстояниях друг от друга.

Со стороны «взросление» будет выглядеть так, будто вещество ячеек «перемещается» от ребер додекаэдра к его центру, а точнее к центру хронооболочки, где оно начинает как бы «кучковаться». Но это видимое представление. На самом деле галактики никуда не двигаются. Энергия выделяется в центре хронооболочки и дальше распространяется к периферии, а звездообразование начинается от периферии и двигается к центру хронооболочки.

В отличие от самой Метагалактики более низкие ее структурные уровни, т.е. скопления и сверхскопления галактик, находятся в более зрелой стадии своего развития. Вследствие этого в хронооболочках сверхскоплений мы наблюдаем «кучкование» вещества в ее центре. Т.е. мы отмечаем, что галактики как бы «переместились» к центру хронооболочки, где и образовали эти скопления. Когда мы сумеем развернуть нашу двухмерную картину звездного неба в трехмерный вариант, то вполне возможно, что мы сумеем увидеть эту грандиозную структуру.

Солнце - одна из ста миллиардов звезд, образующих гигантскую звездную систему, Галактику, которая представляется нам на небе широкой полосой Млечного Пути. В Галактике различают плоскую подсистему, имеющую вид диска с утолщением посередине, и сферическую подсистему, в которую этот диск погружен. Диск Галактики и ее сферическая подсистема содержат приблизительно одинаковое число звезд. Солнце принадлежит галактическому диску и отстоит от его центра на расстоянии двух третей радиуса диска. Радиусы диска и сферической подсистемы близки друг другу и составляют 15 килопарсеков (1 парсек (пс) - это около трех световых лет или 3 1018 см, 1 килопарсек (кпс) = 1000 пс). В диске Галактики, кроме звезд, имеется еще межзвездный газ и космическая пыль, масса которых составляет несколько процентов массы звезд; в сферической подсистеме газа и пыли практически нет. Среди звезд диска имеется заметное количество молодых ярких звезд, тогда как в сферической подсистеме такие звезды почти полностью отсутствуют. Диск Галактики вращается как целое; угловая скорость вращения разная на разных расстояниях от его центра. В области, где находится Солнце, линейная скорость вращения диска составляет 220- 250 км/с. Звезды диска обращаются вокруг центра по почти круговым орбитам; отклонения от кругового движения характеризуются скоростями, которые не превышают 20 км/с. У звезд сферической подсистемы, находящихся поблизости от Солнца, скорость общего регулярного вращения вокруг центра Галактики по крайней мере раз в пять меньше, чем у звезд диска. Звезды сферической подсистемы движутся по вытянутым орбитам, их типичные скорости измеряются двумя-тремя сотнями километров в секунду. Значительная часть звезд диска Галактики входит в различного рода группы. Не менее половины всех звезд входит в звездные пары, крупными образованиями являются рассеянные скопления, содержащие до тысячи звезд, связанных взаимным тяготением. Самые молодые звезды диска вместе с облаками газа и пыли располагаются широкими полосами - спиральными рукавами, которые яркими широкими дугами выходят из центральной области Галактики. Распределение звезд в сферической подсистеме более или менее сферически-симметрично.

Приблизительно тысячная их доля входит в большие скопления, содержащие до миллиона звезд, которые называют шаровыми скоплениями. Звезды обеих подсистем Галактики сгущаются к центральной области - ее ядру, которое проявляет себя как источник повышенного радиоизлучения, а также излучения в инфракрасных, рентгеновских и гамма-лучах. Из ядра происходит, по-видимому, также истечение газа. Светимость Галактики, т. е. полная энергия, излучаемая всеми ее звездами в единицу времени, составляет 3 1037 Вт; это приблизительно в сто миллиардов раз больше светимости Солнца (4 1026 Вт). Полная масса звезд Галактики оценивается в 2 1044 г, что составляет сто миллиардов масс Солнца (2 1033 г). Массой и светимостью Солнца как мерой масс и светимостей звезд и звездных систем широко пользуются в астрономии и астрофизике. В последние годы выясняется, что Галактика обладает протяженной короной, простирающейся па расстояния, в десятки раз превышающие размеры диска и сферической подсистемы. Полная масса короны в несколько раз превышает суммарную массу всех звезд Галактики, но из-за больших размеров ее плотность невелика по сравнению с плотностью, создаваемой звездами и газо-пылевыми облаками. Корона проявляет себя тяготением, но не излучает света и в ней не обнаруживают ни звезд, ни облаков.

Во Вселенной имеется большое число других звездных систем, галактик, подобных нашей Галактике. Галактики, обладающие дисковой подсистемой со спиральным узором, называют спиральными. Ближайшей к нам гигантской спиральной галактикой является знаменитая Туманность Андромеды. Ее масса и светимость раза в два больше, чем у Галактики. Другие спиральные галактики не так массивны; чаще всего их массы составляют миллиард или десять миллиардов масс Солнца, а светимости соответственно в 10-100 раз ниже светимости Галактики. Кроме спиральных, существуют эллиптические галактики, по своему строению и звездному населению подобные сферической подсистеме нашей Галактики. В них практически нет газо-пылевого вещества и молодых ярких звезд. Самые крупные эллиптические галактики имеют массу и светимость раз в десять больше, чем у Галактики. Имеются и карликовые эллиптические галактики с массами и светимостями, в десятки тысяч раз меньшими. Очень часто эллиптические галактики, особенно самые массивные, имеют плотные ядра, которые по своим проявлениям обычно больше и активнее ядер спиральных галактик.

Еще один тип галактик - неправильные. Их массы и светимости в десятки раз меньше, чем у Галактики. Звездный состав подобен населению дисков спиральных галактик. Но эти звезды, а также и значительные массы газо-пылевого вещества, не образуют регулярной структуры и не обладают выраженным общим вращением. Кроме ярких молодых звезд, в неправильных галактиках имеются еще и звезды старые, менее яркие, подобные звездам сферической подсистемы Галактики, также образующие общий сферический остов. Эти три типа галактик были впервые обнаружены и изучены Э. Хабблом и другими астрономами в двадцатые-тридцатые годы нашего века. С тех пор стали известны и галактики иных типов, не всегда укладывающиеся в первоначальную классификацию. Это относится в первую очередь к галактикам с активными ядрами и значительным радиоизлучением. Экстремальными объектами такого рода являются открытые в шестидесятые годы квазары. В них звездная составляющая не обнаруживается; она либо вообще отсутствует, либо, что более вероятно, имеется, но незаметна на фоне огромной светимости плотного ядра, доходящей до 1039-1040 Вт, что в десятки тысяч раз больше светимости Галактики. Эта энергия исходит из областей с размером 1016-1018 см, что в десятки и сотни тысяч раз меньше размера Галактики. Радиоизлучение квазаров сравнимо по интенсивности с их оптическим излучением, а инфракрасное излучение часто и еще больше. Имеется распространенная разновидность квазаров с низким радиоизлучением; такие объекты называют квазагами, т. е. квазигалактиками. Вследствие исключительно большой светимости квазары видны па очень больших расстояниях.

Самые удаленные объекты, доступные наблюдениям на современных астрономических инструментах,- это именно квазары. Они как бы очерчивают границы Метагалактики - наблюдаемой области Вселенной. Расстояние до самых далеких квазаров оценивается тысячами мегапарсеков (1 мегапарсек (Мпс) =1000000 пс). Свет от них идет к нам миллиарды лет. Большая часть галактик входит в те или иные группы или скопления, насчитывающие от десятков до тысяч членов. Имеются скопления галактик относительно правильной сферической или эллипсоидальной формы. Таково, например, одно из самых больших известных скоплений, скопление в созвездии Волос Вероники (Coma), имеющее радиус около 4 Мпс и содержащее приблизительно десять тысяч галактик, среди которых преобладают эллиптические галактики. Как обнаружено в последние годы, многие богатые скопления галактик содержат значительные количества горячего газа, проявляющего себя рентгеновским излучением. Температура газа достигает ста миллионов градусов и он находится в состоянии плазмы, т. е. в состоянии ионизации, при котором электроны оторваны от ядер. Масса горячего газа в скоплениях сравнима с суммарной массой галактик. Судя по динамике галактик в скоплениях, по температуре межгалактического газа, эти системы содержат еще большие (в 3-10 раз) количества другого вещества, которое проявляет себя только создаваемым им тяготением. Скопления и группы галактик распределены в пространстве не вполне случайным образом. Местная группа галактик, в которую входят наша Галактика, галактика Андромеды и еще три десятка менее крупных объектов, образует вместе с двумя-тремя другими близкими группами галактик систему, называемую Местным Сверхскоплением. Это уплощенное образование, размером до 50 Мпс; его плоскость перпендикулярна к плоскости диска нашей Галактики; центр Местного Сверхскопления лежит в направлении созвездия Девы в крупном скоплении галактик, отстоящем от нас на 20 Мпс.

Известны и другие сверхскопления с размерами от 20 до 100 Мпс и массами 1015 - 1016 масс солнца. На крупномасштабной карте неба, на которой галактики выглядят просто точками, скопления галактик часто представляются собранными в протяженные цепочки,- вероятно, сверхскопления. Цепочки соединяются и пересекаются, складываясь в сетчатую или ячеистую структуру. Универсальность ячеистой «сверхструктуры» еще предстоит проверить наблюдениями, но несколько примеров ячеек уже надежно изучено. Иерархия космических структур обрывается на скоплениях и сверхскоплениях. Более крупных образований в Метагалактике не находят. Подсчитывая число галактик в больших объемах, с размерами 300 мегапарсек и более, содержащих много скоплений и сверхскоплений, находят их среднюю концентрацию в пространстве, а, зная массы галактик, можно оценить и среднюю плотность вещества в таких объемах. Эта плотность оказывается одинаковой, где бы на небе ни выбрать такой объем; по современным данным она составляет 3 1031 г/см3 или, в пересчете на атомы водорода, примерно один атом на тридцать кубических метров объема. Правда, астрономические оценки масс не очень надежны. Задача осложняется тем, что помимо светящегося вещества самих галактик, в пространстве вокруг них существуют, по-видимому, значительные массы вещества, наблюдать которые непосредственно не удается,- может быть, звезды низкой светимости или газ, или даже черные дыры, а может быть, и нейтрино (если у них есть масса покоя). Скрытые массы проявляют себя, как мы говорили, только тяготением, которое сказывается на движении галактик в группах и скоплениях. По этим признакам оценивают связанную с ними среднюю плотность, которая, как полагают Я. Э. Эйнасто и его коллеги в Тартуской обсерватории, может быть в 2-3 раза или даже в 5-10 раз больше усредненной плотности галактик. То обстоятельство, что число галактик и плотность вещества оказываются одинаковыми по достаточно большим объемам, где бы эти области ни находились, означает, что Вселенная, рассматриваемая в большом масштабе, является в среднем однородной. Это одно из фундаментальных свойств окружающего нас мира.


Одной из самых загадочных на сегодняшний день наук является астрономия. В ней, как ни в какой другой столько вопросов, на которые мы не можем, но пытаемся найти ответы. Одним из таких глобальных вопросов является вопрос о возникновении и распределении различных форм материи нашей Вселенной. Когда с момента Большого Взрыва праматерия начала сформировываться в звёзды и галактики, которые мы можем наблюдать сегодня? Если предположить, что перед начавшимся сжатием материи, она была в большей или меньшей степени рассеяна, могла ли тогда Вселенная на начальной стадии своей эволюции заполниться различными типами вещества? Последние исследования в этой области помогают ответить на эти и другие вопросы, связанные с эволюцией вещества нашей Метагалактики. А недавние наблюдения подтверждают наличие сверхскоплений галактик-организованных структур, состоящих из множества скоплений галактик. Каждое такое скопление, в свою очередь, может состоять из сотен или даже тысяч индивидуальных галактик. Наличие таких сверхскоплений долгое время было лишь предположением, из-за того, что с их подтверждением был связан один большой парадокс, ставивших учёных в тупик: в некоторых, столь же больших участках космического пространства галактик не было вовсе.

Такие сверхскопления галактик столь обширны, что отдельные их члены двигаясь с произвольными скоростями, не могут пресечь больше половины диаметра всего сверхскопления в течение миллиардов лет с момента их возникновения. Очевидно, что исторически сложившиеся сверхскопления по своему устройству не имеют аналогов с подомными им меньшими системами. В масштабах меньших, чем такие сверхскопления, первоначальные распределение материи, было, скажем так, изменено эволюционным «миксингом». Астрономы надеются, что понимание и объяснение таких огромных конструкций в нашей Вселенной прояснит процессы, которые дали толчок к развитию структуры всех измерений: от галактик к звёздам и планетам.

На сегодняшний день невозможно определить, кто первым выдвинул идею о том, что скопления галактик могут быть членами много больших структур, названных сверхскоплениями галактик. Внегалактическая астрономия, наблюдения в рентгеновских, ультрафиолетовых и инфракрасных участках спектра открыли, да и продолжают открывать всё новые и новые тайны нашей Вселенной и справедливо будет сказать, что наиболее важная космологическая информация была собрана наземными телескопами в видимых и невидимых лучах.

Даже за долго до изобретения телескопа, наблюдатели могли созерцать в ночном небе не только звёзды и планеты, но также и маленькие туманные облачка света. После создания крупных телескопов в 19-том веке, некоторые из таких туманностей были разрешены на отдельные звёзды. Поначалу их считали самостоятельными звёздными системами, находящимися вдалеке от нашей собственной галактики. Впервые, такие туманности были описаны в каталоге Джона Гершеля в 1864 году. Назывался он GC (General Catalogue), а позднее в 1888 году в каталоге Дрейера (New General Catalogue.)

В последствии, астрономы, которые верили, что некоторые туманности составили одинокие системы, начали говорить о том, что такие объекты обладают тенденцией сформировываться в скопления. В 1908 году шведский астроном С.Чарлиер выдвинул идею о «иерархической» структуре скоплений. Он выделил несколько таких скоплений, из которых самыми большими были скопления в созвездиях Девы и Волосы Вероники. В 1922 году английский учёный Дж. Рейнолдс выяснил, что группа «туманностей» простирался от Большой Медведицы через Волосы Вероники в Деву, покрывая расстояние около 40о северного неба. Рейнолдс полагал также, что эти «туманности» были частью нашей собственной звёздной системы. Может быть, он был первым, кто вообще отождествил эти объекты, сейчас называемые Местной группой галактик, частью которой является и наша галактика.

К середине 1920-х годов Эдвин Пауэл Хаббл с обсерватории Маунт Вилсон доказал, что многие из этих «туманностей» составляли одиночные системы. К 1929 году он опубликовал совместно с М.Хьюмансоном своё исследование, посвящённое тому, что «чем удалённее галактика, тем больше её свет смещается в красную сторону спектра».Такое красное смещение, как известно, является своеобразным показателем того, насколько быстро галактика удаляется от нас в рамках всеобщего расширения космического пространства. Сегодня, красное смещение названо законом Хаббла, которое, помимо всего прочего, является основой современной наблюдательной космологии.

Значение красного смещения (z) вычисляется вычитанием остатка длинны волны красного смещения галактических спектральных линий от наблюдаемой длинны волны и делением оставшейся длинны. Наибольшее значение красного смещения найденной Хьюмансоном (в конце 40-х) составило 2, и было равно 60000 км/с. или 20% скорости света. Такая галактика находилась от нас на расстоянии около 2,6 млрд. световых лет. Но самыми удалёнными от нас объектами являются, конечно же, квазары, чьё красное смещение >=3,5. Они удаляются от нас со скоростью около 90% скорости света и находятся в 15 млрд. св. лет.

В 1930-х Хаббл и Харлоу Шепли (Гарвардская обсерватория) обратили внимание на то, что на северном небе число ярких галактик больше, чем на южном. Хаббл, также, сфотографировал огромное количество слабых галактик и был уверен, что нашёл возможный конец феномену скоплений, хотя это было только начало больших открытий, которые ждали нас впереди. Ещё один, очень важный и значительный вклад в науку Хаббл сделал, когда классифицировал различные формы галактик, известных в то время. Вкратце, об этой классификации можно сказать, что все галактики Хаббл разделил на два главных класса: эллиптические и спиральные, делящиеся, в свою очередь, ещё на несколько классов… К 1950 году, учёные могли согласиться с общей характеристикой скоплений галактик. Из известных тогда нескольких таких скоплений, наиболее крупным было скопление в Волосах Вероники, которое насчитывало более 1000 индивидуальных галактик. Такие скопления в большинстве своём состояли из эллиптических и SO галактик. Не более половины всех галактик располагались внутри таких скоплений; остальные, называвшиеся, «полевыми» объектами, считались изолированными звёздными системами (в большинстве своём спиральными), лежащими вне скоплений. Несколько астрономов предположили, что область в Деве может состоять больше чем из просто скопления и гипотеза, предложенная Чарлиером об иерархической структуре гораздо более крупных скоплений была подвергнута сомнениям исследованиями Хаббла по подсчёту удалённых галактик.

Ж.Вакулер из Техасского университета в Остине, который занимался изучением более ярких галактик в северном галактическом полушарии с начала 50-х, был первым, кто определил и описал ближайшее к нам скопление. Согласно его исследованиям, оно расположено в скоплении Девы в 60 св. годах от нас и может иметь до 50 внерасположенных скоплений, названных группами, содержащими индивидуальные галактики, разбросанные между такими группами. Наша галактика находится в одном из скоплений, которое астрономы назвали Местной группой галактик, причём так, что она вне сверхскопления.

Второе великое открытие 50-80-х гг. — это растущая уверенность в том, что Местное сверхскопление не уникальное явление во Вселенной. Между 1950 и 1954 гг. всё северное небо было обозрено с широкоугольным 1,2м. телескопом им. Шмидта на горе Паломар. (Широко известный Паломарский обзор неба.) Вскоре после этого, Дж. Абелл из Калифорнийского университета в Лос-Анджелесе составил каталог 2712 больших скоплений галактик. Абелл заметил, что многие из таких скоплений, казалось, были членами сверхскоплений, состоящих, в среднем, из 5-6 скоплений каждое. Его предложение, однако, основывалось на данных другого каталога скоплений, составленного на базе похожего исследования, проведённого Ф.Цвикки и его коллегами из Калифорнийского университета. Каталог Цвики говорил о том, что скопления не могут состоять из структур высшего порядка. Разногласие может быть разрешено с учётом того, что скопления, описанные Цвикки немного больше чем аналогичные объекты из каталога Абелл и включают в себя несколько центров концентрации галактик. Примерно в то же время, но уже на основе другого обзора неба (дополненного Ликской обсерваторией), Дж. Нейман, Э.Скотт и С.Шейн из Калифорнийского университета в Беркли (сообщавшего об открытии огромных «облаков галактик» — их терминологии сверхскоплений), также опытно предположили, что каждая галактика во Вселенной принадлежит скоплению, в ней не может быть изолированных звёздных систем. В 70-х наиболее полный из всех каталогов, составленный П.Пиблсом и его коллегами из университета в Принстоне, учитывающий ещё и спектры галактических скоплений говорит нам, помимо этого то, что скопления имеют тенденцию располагаться близко друг от друга.

Третье великое открытие в изучении феномена скоплений с начала 50-х, было в использовании красного смещения. Первым шагом в исследованиях такого рода, стало измерение красных смещений всех галактик, ярче определённой звёздной величины. Применяя закон Хаббла к значениям красных смещений, расстояние каждой галактики может быть вычислено с достаточной точностью. Такой подход имеет намного больше преимуществ в сравнении с анализом данных из каталогов, которые дают только две координаты галактики в пространстве (прямое восхождение и склонение.) По данным таких каталогов третья величина-расстояние, может быть приблизительно определено только по блеску галактик. На основе же красного смещения, расстояние определяется довольно точно по закону Хаббла. Недостаток этого метода в том, что тогда как, положение тысяч галактик может быть получено из одной фотографии, спектральные красные смещения определяются только однажды. Другими словами измерение красных смещений гораздо более длительный и трудоёмкий процесс. Эти два метода несовместимы. Каталоги дают анализ большого числа галактик в значительных областях Вселенной; красные же смещения обеспечивают три пространственных измерения, но во много меньших областях.

Надо сказать, что вообще, исследования красных смещений стали возможны только благодаря прогрессу телескопостроения. В частности, Хаббл и Хьюмансон имели доступ к самым большим инструментом своей эпохи (100 футовый рефлектор в Маунт Вилсон, а позже и 200 футовый на Паломаре), но тогдашнее фотоэмульсии мало сравнимы с сегодняшними. Современные спектрографы обычно включают электронные устройства, которые усиливают изображение, по меньшей мере, в 20 раз, прежде чем оно появится на детекторе. Активно используются и цифровые приёмники, так как они способны улавливать даже отдельные фотоны. Как результат, нынешние астрономы могут принимать за полчаса столько информации, сколько Хаббл и его современники принимали целую ночь.

Если заглянуть в прошлое, то первое исследование красных смещений было представлено на конференции 1960 года по применению оптических систем в астрономии. Работая с таким из таких новых устройств (с 120 футовым рефлектором Ликской обсерватории) Н.Майял получил спектры 40 из 82 ярчайших галактик, расположенных в 4о от центра скопления галактик в Волосах Вероники. В 1972 Р.Руд и Т.Падж из Вэсленского университета дополнили и расширили первоначальное исследование Н.Майла. Дополненные красные смещения были зарегестрированны Е.Кинтнером из того же университета, который затем проанализировал имеющиеся образцы в сотрудничестве с Руд, Падж и И.Кингом из университета в Беркли. Их результаты представляют первое современное, детальное изучение красных смещений, выполненное для одиночного скопления галактик. Они сообщали, что скопление состоит, в большинстве своём, из эллиптических систем и галактик типа SO, двигающиеся со скоростями, более чем 1000 км. В секунду, и что они могу быть не влиять на размеры скопления.

Четыре года спустя В.Тиффт из Аризонского университета и один из авторов данной статьи (Грегори) дополнили исследование по скоплению в Волосах Вероники, расширив и углубив его. Мы обнаружили, что само скопление занимает три градуса от центра, а число галактик формирует похожее на руку конструкцию, достигающую западной оконечностью ближайшего скопления А1367 и возможно соединяющуюся с ней. (А1367 стоит под номером 1367 в каталоге Абелл. Само скопление-Вероника-А1367.) Наши данные говорят о том, что красные смещения дают не только детальную картину удалённых скоплений, но также и важную информацию о галактиках, которые могут находиться на «переднем плане». Из-за того, что галактики на «переднем плане» кажутся находящимися в рассеянных «скоплениях», названных группами (или «облаками» если они ещё реже), красное смещение может обнаружить «скопления» разных размеров: от гигантских до самых маленьких. Действительно, редкие «переднеплановые» образцы могут очень много нам рассказать о том, как обычные скопления сформировываются в очень крупные и сложные структуры. Наши исследования также обращают внимание на малочисленность полевых галактик.

В стремительном и обширном потоке исследований очень часто можно встретить почти одинаковые результаты наблюдений, сделанных, однако, разными авторами. Также случилось и с Руд и Г.Чинкарини из университета в Оклахоме, которые занимались изучением галактик к западу от скопления в Веронике и обнаружили, что направленная на запад часть скопления, была всё ещё видна на расстоянии более 14о от основного скопления. Они также предположили, что эта западная часть может связывать скопление в Веронике и скопление А1367. Авторы статьи дополнили наблюдение скопления в Веронике новыми данными по его западной ветви и подтвердили, что эти два скопления могут быть связаны как бы мостом из галактик, который занимает 276 квадратных градусов и состоит из 278 галактик. (Данные собраны по наблюдениям Хэнса и Майла.)

Скопление в Веронике расположено около полюса нашей галактики, примерно в 90о от «покрывала» из пыли и газа, которое ограничивает видимость центральной области галактики. В нашем исследовании, мы решили взять спектры только тех галактик, которые ярче 15 звёздной величины, в миллионы раз дальше, чем Вега-одна из ярчайших звёзд северного неба. У нас, когда галактики показаны в двух измерениях, как они расположены на небе, можно видеть две главные концентрации: само скопление в Веронике на северо-востоке и скопление А1367 в юго-западном направлении (рис. 1.) По-другому, они производят очень сильное впечатление того, что карта составлена из многих удалённых друг от друга галактик, более или менее случайно распределённых между двумя центрами.

Результаты по исследованию красного смещения могут показать, как почти одинаковые галактики распределены согласно третьему измерению, то есть расстоянию, выявляя, при этом, довольно интересные результаты. Для этой цели, однако, достаточно использовать две позиционные координаты: радиальное расстояние (полученное из красных смещений) и угловое расстояние западно-восточных направлений неба (рис. 2.) Этот рисунок показывает нам неравномерное распределение галактик. Около нашей галактики также есть несколько небольших групп, напоминающих вершину своеобразного клина. Наиболее впечатляющей всё же является «густонаселённая» область в 315 млн. световых лет от нашей галактики (см. рис. 2.) Эта концентрация и называется сверхскоплением, так как она связывает не только два богатых скопления (в Веронике и А1367), но и несколько менее «населенных» скоплений, которые вместе образуют гигантскую межгалактическую структуру, простирающуюся на 70 млн. св. лет. Удивительно то, что наряду со сверхскоплениями на рисунке отчётливо видно, что существуют несколько «пустот» — районов, совершенно свободных от галактик. После завершения исследования, мы были уверены, что пустоты действительно существовали, но у нас были сомнения насчёт их уникальности. Понятно, что сначала мы считали их принадлежащими только этому участку неба.

С тех пор как было обнаружено первое сверхскопление по своей структуре и составу отличное от отдельных галактик, понадобилось найти другие сверхскопления, не похожие на Веронику-А1367, для того чтобы больше узнать об их природе. В 1982, по крайней мере, три ещё больших скопления находились под пристальным вниманием учёных. И все три имели свои особенности. В конце 70-х, начале 80-х гг., была исследована область скопления в Геркулесе одним из авторов данной статьи (Томпсоном) в сотрудничестве с Чинкарини, Руд, Тиффт и М.Таренгхи с двух метровыми телескопами Стюардской обсерватории (Аризонский университет) и национальной обсерваторией Китт-Пик. И снова исследования показали наличие довольно обширного сверхскопления, занимающего расстояние в 400-600 млн. св. лет. В отличие от Вероноики-А1367, скопление в Геркулесе не обладает одним или двумя дополнительными скоплениями. Несмотря на это, со скоплением в Веронике оно схоже в наличии обширной пустоты на переднем плане. Однако возможно наиболее удивительным явлением системы в Геркулесе является то, что большая часть населяющих его галактик-спирали. Они встречаются гораздо чаще, нежели эллиптические. Одна только эта особенность делает скопление в Геркулесе довольно примечательным.

Третьим по времени изучения сверхскоплением был участок звёздного неба с созвездиями Персея и Рыб. Сильно вытянутый в длину, он занимает более 40о, от хорошо известного скопления в Персее до маленькой группы галактик около эллиптической системы NGC 383. Новые наблюдения авторов в сотрудничестве с Тиффт показывают, что глубина видимого скопления не больше чем его ширина. В частности, мы можем полагать не только то, что скопление по форме напоминает нить, нитевидное волокно, но и также то, что отдельные галактики-члены скопления имеют довольно низкие скорости собственных движений. У нас также есть предположение, что многие галактики в скоплении Персей-Рыбы располагают плоскостями вращения или параллельными к оси скопления или же перпендикулярными ей. Данные наблюдения могут многое рассказать нам о том, как формируются галактики и сверхскопления. Третий обзор красных смещений покрывает только 2% видимого неба. Сразу несколько обсерваторий пытаются получить больше сведений о феномене сверхскоплений. Например, Д.Эйнасто, М. Йовир, Э.Саар и С.Таго из Эстонии, который независимо открыл скопление в Персее, а также пустоты в нём и проанализировал самый полный каталог галактических красных скоплений. Однако, каталог этот не достаточно подробен и нуждается в дополнении новыми результатами исследований.

Подобным образом, Чинкарини и Руд проанализировали распределении удаленных галактик, которые первыми сделали С.Рубин, В.Форд и их коллеги из отдела земного магнетизма Института Карнеги в Вашингтоне. Исследование Рубин-Форда покрывает всё небо, но имеет небольшие подробности в каждой его области. Это, в свою очередь, даёт возможность Чинкарини и Руд подтвердить наличие трёх сверхскоплений, которые мы описал выше и добавит ещё одну, ранее не отождествлённую структуру в южном полушарии: скопление в Гидра-Центавре. Труды Чинкарини, Руд, Эйнасто, Йовир, Саар и Таго дают основание полагать, что сверхскопления расположены далеко за пределами тех областей, которые мы упоминули в нашем исследовании красных смещений. Согласно их расчётам, скопление в Веронике-А1367 и Персее могут занимать площадь в 10 раз большую, чем ту, которую мы изначально предполагали.

Эти гипотезы получили дополнительную поддержку со стороны исследования, проведённого Р.Киршнер из университета в Мичигане, А.Омлер, П.Шечтер из Китт-Пик и С.Шетчман из обсерваторий Маунт-Вилсон и Лас Кампанас. Их исследование покрывает три маленьких участка северного галактического полушария. В каждой такой области они обнаружили галактики с красными смещениями, близкими к тем, которые были у галактик скопления Вероника-А1367. Они также были уверены, что нашли огромную пустоту, чьи размеры могли составлять 30на 1024 кубических св. лет. Из нескольких небольших областей на небе, сконцентрированных около северного галактического полюса, три казалось, были абсолютно свободными от галактик с красными смещениями около 12000-18000 км/с. В четырёх других областях, где они ожидали обнаружить около 25 галактик с красными смещениями в том же диапазоне, они, вопреки ожиданиями, нашли только одну такую галактику. Таким образом, вычисленная на основе всего исследования пустота расположена на расстоянии 570-780 млн. св. лет.

На основании настоящей работы, мы рассмотрели три наиболее хорошо определённых сверхскопления: Вероника-А1367, скопление в Геркулесе и Персее (см. рис. 3.) В таком представлении, наша галактика находится в центре. Тенденция галактик группироваться в скопления выглядит довольно своеобразно. Распределение пустот, которое мы посчитали сперва неуверенно, теперь не вызывает никаких сомнений. Вселенная могла так самоорганизоваться, что пространство между скоплениями могло быть заполнено более мелкими группами галактик, помимо того, что пустоты являются частью процесса формирования скоплений и сверхскоплений.

Изучение сверхскоплений относится не только к оптической астрономии; радио и рентгеновская астрономия также вносят существенный вклад. Радиоастрономы в состоянии зафиксировать наличие межгалактического газа, прежде всего тем, что некоторые радиоисточники в скоплениях и сверхскоплениях выдали себя вероятностью того, что газ был с низкой плотностью, а не высокой температуры. Если бы этот газ наполнял все сверхскопления таким же образом, каким они наполняют только некоторые из них, его вклад в общую массу сверхскоплений был бы огромен. Рентгеновская астрономия зафиксировала исключительно горячий газ у удалённых сверхскоплений. Непонятно, однако, идёт ли излучение только из центров ярких скоплений или же из областей между этими центрами. Дж. Бёрнс из университета в Нью – Мексико и один из авторов (Грегори) сравнили значения красных смещений различных скоплений, полученных Китт-Пик, радио карты «Очень большого радиотелескопа» в Сокорро и данные с рентгеновской обсерваторией Эйнштейн. Другие астрономы применили свои методы для собственного исследования красных смещений. Они были определены на основе наблюдений смещения 21-см. радиоэмиссионной линии неионизированного водорода в межзвёздном пространстве. Одно такое исследование было выполнено Р.Фишером и Р.Тулли из Гавайского университета в Маноа, которые нанесли на карту галактики местного сверхскопления. Наиболее чувствительный для такого рода наблюдений радио телескоп –303 метровая антенна в Аресибо (Пуэрто-Рико); на которой, собственно, и были проведены наблюдения всех трёх, уже упоминавшихся ранее скоплений. Учёные, работавшие над этимпроектом, включали С.Чинкарини, Т.Бания, Р.Джиованелли, М.Хайнеса и одного из авторов (Томпсона.) Наблюдения эти довольно не однозначны, так как проведены не только для одной галактики, но также и для различных образований внутри нескольких сверхскоплений. Также эти исследования не достаточно «продвинуты» для того, чтобы сделать новые выводы о внутренней организации скоплений, и нуждаются в будущих наблюдениях.

Из исследований красных смещений стало ясно, что настоящее распределение галактик довольно не однородно на расстояниях в сотни миллионов световых лет. Довольно вероятным кажется тот факт, что эта неоднородность «тянется» на миллиарды световых лет и характерна для всей Вселенной. Однако следует добавить, что Вселенная может содержать в себе намного больше материи, чем кажется. Возможное существование такой материи (названной скрытой массой) сейчас предмет обширных дискуссий.

Если сегодня Вселенная неоднородна, то, очевидно, что на ранних этапах своего развития она всё же была однородна. Очевидность эта исходит из того факта, что мягкое, фоновое излучение Земли, которое «опутывает» нашу планету в микроволновом радиодиапазоне удивительно стабильно. Преобладающая точка зрения заключается в том, что фоновое излучение представляет собой расширившийся и охлаждённый остаток ранней, горячей Вселенной. Однако в 80 –х гг. были обнаружены некоторые неоднородности небольшого размера, но простирающиеся на огромные расстояния в пространстве. Можно ли представить себе такие неоднородности? Мы надеемся на то, что отдельные галактики и наличие огромных пустот внесут определённую ясность в вопрос о формировании галактик, скоплений галактик и сверхскоплений. На этот счёт существуют две ведущие гипотезы. Более условная модель говорит о том, что отдельные галактики появились вне близкой, однородной материи. Главная трудность данной гипотезы состоит в объяснении того, как Вселенная развилась из стохастического состояния в состояние, когда уже начали формироваться галактики. Согласно этой гипотезе, с тех пор как сформировались галактики, небольшие неоднородности в их распределении медленно расширились под длительным воздействием гравитационных сил. Конечным результатом такого расширения явились сверхскопления, которые мы и можем и наблюдать сегодня.

Следующие теоретические объяснения вопроса формирования галактик были предложены в 1972 г. двумя российскими учёными: Яковом Зельдовичем и Рашидом Сюняевым. Согласно предложенной ими модели газ молодой Вселенной не сразу компактифицировался в звёзды и галактики. Вместо этого, масштабные неоднородности в общем распределении газа увеличивались в ответ на гравитационное притяжение и стали большей частью неправильными. В конце концов, газ стал достаточно плотным для того, чтобы сконденсироваться в обширные пространства материи (названные «блинами»), которые затем сформировались в галактики. Таким образом, согласно данным предположениям, скопления и сверхскопления сперва были просто сгустками газа и только потом в них появились галактики.

Но получила ли какая-нибудь из этих моделей поддержку наблюдениями, которые мы выполнили для сверхскоплений? Например, модель Зельдовича – Сюняева требовала, чтобы все галактики входили в скопления или сверхскопления, «полевые» галактики или просто отдельные звёздные острова должны были быть самостоятельными, изолированными системами. Если такая модель правильна и галактики могут образовываться где угодно, только позднее формируясь в группы или скопления, отдельные галактики должны быть довольно распространёнными. Вообще, только группы изолированных галактик, которые мы открыли по нашим красным смещениям, были группами, разбросанными по границам сверхскоплений. Пустоты же оказались действительно свободными от галактик. Мы полагаем, что отдельные галактики, разбросанные внутри сверхскоплений, были когда-то членами небольших групп, впоследствии разрушенными столкновениями внутри плотных сверхскоплений. Кажется вероятным предположить, что в одно время все галактики были членами групп или скоплений. В целом, исследованное распределение галактик внутри сверхскоплений и наличие огромных пустот между ними полностью согласуются с моделью Зельдовича – Сюняева. Сторонники же альтернативной гипотезы надеются найти поддержку в объяснении того, как небольшие неоднородности могли превратиться в большие посредством случайных процессов.

В описании нитевидного скопления Персей-Рыбы мы предположили вероятность того, что оси вращения некоторых галактик находились в соответствии не только с осями вращения других галактик, но и возможно с массивной структурой самого скопления. Эта идея получила поддержку со стороны исследований, проведённых Марком Адамсом, Стефаном Стромом и Кареном Стромом из Китт – Пик, которые обнаружили похожие соответствия вращений в сразу нескольких скоплениях. Если такие соответствия подтвердятся, сторонники условной модели галактической формации столкнутся с непреодолимыми препятствиями в объяснении их собственных гипотез. Случайные статические процессы в условной модели не ведут к пониманию вращательных движений в больших диапазонах. Модель же Зельдовича – Сюняева готова объяснить такие соответствия.

Каковы перспективы подобных исследований в ближайшем будущем? Одним из самых обещающих направлений таких исследований является продолжение измерения микроволнового, фонового излучения. Даже небольшие неоднородности, замеченные в данном излучении, свидетельствуют о наличии вещества молодой Вселенной. Их параметры близки к тем, которые необходимы для проверки двух моделей галактической формации.

Наши последние комментарии касаются подведению итогов ко всему выше сказанному. Во–первых: Являются ли сверхскопления наиболее высокоорганизованными структурами в нашей Вселенной? Есть ли ещё что – нибудь кроме них? Для многих наших коллег, сверхскопления являются структурами, созданными гравитацией и кроме них больших образований нет. На наш взгляд, сверхскопления представляют собой возможно нынешнее состояние галактик, которые изолированы от других звёздных систем внутри самих скоплений.

Во – вторых, универсальность скоплений. Мы полагаем, что каждое богато населённое скопление в каталоге Abell является частью сверхскопления. Мы, однако, думаем, что необходимое условие для формирования крупного скопления именно в наличии скоплений – компаньонов. Наконец, мы хотим оставить читателя с чувством восхищения перед величием сверхскоплений. Скопление Вероника – А1367, на пример, находится более чем в 300 млн. св. лет от нашей галактики. Причем, находясь на таком огромном расстоянии, оно занимает, по меньшей мере, 20о на нашем небе, простираясь по созвездиям Волос Вероники и Льва. Чинкарини и Руд говорят о том, что оно может быть в 10 раз больше. Для астрономов и космологов, структуры нашей Вселенной подобных размеров оставляют поистине огромное количество вопросов и загадок для будущих наблюдений и исследований.

Данная статья была впервые опубликована в журнале Scientific American Стефаном А. Грегори и Лаярдом А. Томпсоном и содержит подробнейшую хронологию исследования сверхскоплений галактик – самых величественных образований нашей Вселенной. Авторы данной работы – это учёные, непосредственно занимающиеся проблемой сверхскоплений галактик, а также исследующие другие deep – sky объекты, новые и сверхновые звёзды. Грегори – профессор астрономии, работает в Нью – Йоркском гос. университете, а Томпсон – доктор философии, работает в Гавайском университете в Маноа сотрудником кафедры астрономии

Скопления галактик

70 миллионов световых лет:

Через центр скопления галактик в Деве проходит замечательная вереница галактик, известная как цепочка Маркаряна. Показанная на фото цепочка начинается вверху справа с двух больших, но невыразительных линзовидных галактик – M84 и M86. Ниже и левее находится пара взаимодействующих галактик, известных как "Глаза". Скопление галактик в Деве, членами которого являются все эти галактики – это ближайшее к нам скопление галактик. В нём – более 2000 галактик, и его гравитационное притяжение оказывает заметное влияние на Местную группу галактик, окружающую нашу Галактику Млечный Путь. Центр скопления в Деве находится на расстоянии около 70 миллионов световых лет в созвездии Девы. По крайней мере семь галактик в цепочке движутся в одном направлении, остальные, по-видимому, случайно оказались в этом месте.

100 миллионов световых лет:

Это трио галактик иногда называют группой NGC 5985/Дракона, оно находится в северном созвездии Дракона. Слева направо на фото расположены повернутая плашмя спиральная галактика NGC 5985, эллиптическая галактика NGC 5982 и, наконец, видимая с ребра спираль NGC 5981 - все они попали в одно поле зрения, поскольку расстояние меду ними чуть больше половины диаметра полной Луны. Эта группа слишком мала, чтобы быть скоплением галактик, она также не была занесена в каталоги как компактная группа. Эти галактики удалены от Земли примерно на 100 миллионов световых лет. Детальное спектрографическое исследование яркого ядра замечательной видимой плашмя спиральной галактики NGC 5985 показало заметное излучение в определенных спектральных линиях, что позволяет астрономам классифицировать эту галактику как сейфертовскую, то есть отнести её к одному из типов активных галактик. На этом глубоком изображении также видны слабые и ещё более далёкие галактики фона.


250 миллионов световых лет:

Это один из самых больших объектов нашего небосвода. Каждое из этих туманных пятнышек - галактика. Вместе они образую скопление галактик в Персее - одно из самых близких к нам скоплений галактик. Мы видим его сквозь расположенные на переднем плане слабые звёзды Млечного Пути. Почти в центре скопления, примерно в 250 миллионах световых лет от нас находится главная галактика скопления NGC 1275. На картинке эту большую галактику можно увидеть слева. NGC 1275 является поразительным источником рентгеновского и радиоизлучения. Она накапливает вещество по мере того, как не неё падает окружающий газ и другие галактики. Скопление галактик в Персее записано в каталог под именем Абель 426. Оно является частью сверхскопления Рыбы-Персей, которое занимает на небе около 15 градусов и насчитывает более 1000 галактик. На расстоянии до галактики NGC 1275 эта фото покрывает ~15 миллионов световых лет.

300 миллионов световых лет:

Галактика NGC 1132 выглядит однородной - но как она сформировалась? NGC 1132 - это эллиптическая галактика, в ней мало пыли и газа, и в ней в настоящее время почти не образуются звёзды. Хотя многие эллиптические галактики находятся в скоплениях галактик, NGC 1132 - это большая изолированная галактика в созвездии Эридана. Чтобы изучить историю этого привлекающего внимание шара из миллиардов звезд, получили изображения NGC 1132 в видимом свете с помощью космического телескопа Хаббла и в рентгеновских лучах на рентгеновской обсерватории Чандра. На этом составном фото видимое свечение показано белым, а рентгеновское излучение – голубым цветом. Рентгеновское излучение показывает неожиданное присутствие очень горячего газа, вероятно, оно также отслеживает распределение тёмной материи. Согласно одной из гипотез, NGC 1132 сформировалась в результате последовательного слияния галактик, входящих первоначально в небольшую группу галактик. Расстояние до NGC 1132 - более 300 миллионов световых лет. На фото можно увидеть также множество замечательных далеких галактик.


450 миллионов световых лет:

Эта группа галактик очень далека. До нее ~450 миллионов световых лет (скопление галактик Эйбелл S0740). Доминирует огромная центральная эллиптическая галактика ESO 325-G004. На этом четком фото, полученном телескопом Хаббла, можно увидеть множество галактик с удивительно разнообразными формами и размерами, и всего несколько звёзд ближнего фона, которые легко отличить по дифракционным лучам. Диаметр гигантской эллиптической галактики – более 100 000 световых лет, в ней почти 100 миллиардов звезд, и по размеру она сравнима с нашей спиральной галактикой. Телескоп Хаббла позволяет даже в таких далеких галактиках увидеть многие структурные детали, включая великолепные спиральные рукава и полосы пыли, звездные скопления, кольцевые структуры и дуги, возникшие в результате гравитационного линзирования.


650 миллионов световых лет:

На фото изображены галактики скопления в Геркулесе - архипелага "островов Вселенной", который находится на расстоянии 650 миллионов световых лет от нас. В этом скоплении галактик содержатся наполненные газом, пылью и областями звездообразования спиральные галактики и относительно небольшое число эллиптических галактик, в которых почти отсутствуют газ и пыль и связанные с ними только что родившиеся звезды. На этой составной картинке галактики со звездообразованием голубого цвета, а эллиптические галактики - желтоватого оттенка. На этом космическом пейзаже видно, что многие галактики сталкиваются или сливаются, а другие галактики кажутся искаженными. Это свидетельствует о том, что галактики скопления взаимодействуют. Со временем взаимодействие галактик будет влиять на состав скопления. Астрономы считают, что скопление галактик в Геркулесе очень похоже на молодые скопления, которые находятся далеко и существовали уже в ранней Вселенной. Изучая типы галактик и их взаимодействие в более близком скоплении в Геркулесе, учёные надеются разгадать эволюцию галактик и скоплений галактик.


8000 миллионов световых лет:

Это изображение группы слабых очень далеких галактик, полученное космическим телескопом им. Хаббла, является снимком молодой Вселенной. Голубоватые неправильные галактики на фото находятся на расстоянии 8 миллиардов лет от нас и проходят стадию столкновения галактик и вспышки звездообразования. Изучение этих объектов - трудная задача, потому что они очень слабые. Исследование этих галактик поможет понять, как образовался наш Млечный Путь.

10000 миллионов световых лет:

Можем ли мы посмотреть в самое начало жизни нашей Вселенной? Можем, так как свет, который пришел к нам из самого начала, пролетел всю Вселенную, и время, которое потребовалось свету достичь нас, равно возрасту Вселенной. Поэтому, наблюдая за далекими объектами, мы можем узнать, как выглядела Вселенная в начале своей жизни. Телескопы представляют собой в некотором смысле "временные ворота". При наблюдениях далеких скоплений галактик (внутри светового конуса) можно видеть, когда и как формировались эти огромные конгломераты галактик. Ранее самым далеким зарегистрированным скоплением галактик было скопление с красным смещением, равным 1.5, то есть оно находится на расстоянии 9 млрд. световых лет. Недавно, используя рентгеновские изображения, полученные на рентгеновской обсерватории Чандра и другие данные, ученые обнаружили новое самое далекое скопление. Объект, который обозначили JKCS041, показан на фото. Красное смещение скопления равно 1.9, то есть скопление находится на один миллиард световых лет дальше предыдущего рекордсмена. Горячий газ, светящийся в рентгеновских лучах, позволяет сделать вывод, что мы наблюдаем не случайную группу галактик, а настоящее скопление. На картинке газ показан синим цветом. Рентгеновское изображение газа наложено на оптическое изображение, на котором видны звезды, расположенные на переднем плане. Сейчас мы видим JKCS041 таким, каким скопление было, когда возраст Вселенной составлял только четверть настоящего возраста.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса