Подпишись и читай
самые интересные
статьи первым!

Основные положения геометрической оптики. Законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:



Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотнуюn 2 <n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптическихсветоводов, называется волоконной оптикой .



Введение.

Уже в древности наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

К середине XVII века накопились факты, которые толкали научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим научную мысль к теории волновой природы света, был чешский ученый Марци. Его работы известны не только в области оптики, но также и в области механики и даже медицины. В 1648 им открыто явление дисперсии света.

В XVII в. в связи с развитием оптики вопрос о природе света стал вызывать все больший и больший интерес. При этом постепенно происходит образование двух противоположных теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в основе взглядов на строение вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

Единство корпускулярных и волновых свойств электромагнитного излучения.

Рассмотренные в данном разделе явления- излучение чёрного тела, фотоэффекта, эффект Комптона- служат доказательством квантовых(корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств- непрерывных(волны) и дискретных(фотоны), которые взаимно дополняют друг друга.

Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волны той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

Волновые свойства света.

Дисперсия.

Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия.

Сущность открытий Ньютона поясняется следующими опытами (рис.1) свет от фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде короткого белого прямоугольника S`. Поместив на пути призму P, ребро которой параллельно щели, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения S`. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране MN , на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при прохождении через призму, и сложные, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1)Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2)Белый цвет есть совокупность простых цветов.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом:

Показатель преломления вещества зависит от длины световой волны.

Обычно он увеличивается по мере уменьшения длины волны.

Дифракция.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

Квантовые свойства света.

Фотоэффект.

Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы – электроны.

Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

Вентильным фотоэффектом называют возникновение под действием света электродвижущей силы в системе, содержащей контакт двух различных полупроводников или полупроводника и металла.

Эффект Комптона.

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. Рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и гамма-излучений) на свободных(или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором- поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, .т.е. эффект Комптона.

Заключение.

Итак, свет корпускулярен в том смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Корпускулярно-волновой дуализм 1. Сущность дуализма в оптике2. История возникновения Сущность дуализма в оптике Определение 1 Существование у света свойств и волны и потока частиц (корпускул) называют корпускулярно -- волновым дуализмом. Противоположность свойств частиц и волн в рамках классической физики не дает возможности утверждать, что свет является одновременно и волной и потоком частиц. Смысл корпускулярно - волнового дуализма свойств света в том, что он может описываться с использованием волновых представлений или корпускулярных понятий, что зависит от условий эксперимента. Нам известны убедительные эмпирические факты, доказывающие волновую природу света (опыты по интерференции, дифракции, поляризации). Но экспериментальные доказательства корпускулярных проявлений света не менее убедительны (эффект Комптона, фотоэффект, тепловое излучение). Ограничения в применении образов классической физики для описания свойств света проявляются также в условности применения образов волн и корпускул. Так, используя корпускулярные представления при описании фотоэффекта надо помнить, что свойства фотона существенно отличаются от свойств частиц в классической физике. Его масса покоя считается равной нулю, скорость движения в любой инерциальной системе отсчета одинакова, всегда отлична от нуля. При этом рассматривая свет как совокупность частиц (фотонов) для нахождения их массы следует использовать волновую характеристику -- частоту.
При рассмотрении волновых явлений, таких как интерференция и дифракция света для фиксации соответствующей картины требуется применение фотоэлемента, что означает использование квантовых свойств света для визуализации его волновых свойств. История возникновенияБольшой период развития оптики как науки связан с противоборством двух взглядов на природу света. Так в XVII веке имелось две теории света. Корпускулярная теория, ее сторонником был И. Ньютон, обладавший неоспоримым авторитетом. Ньютон считал свет потоком частиц, которые перемещаются от источника света во все стороны. Ньютон, используя свои представления, объяснил прямолинейность распространения света, но не смог объяснить законы отражения и преломления. Ярким представителем противоположного направления, представлявшего свет как совокупность волн, был Х. Гюйгенс. Гюйгенс считал свет волной, которая распространяется в эфире, все заполняющей и везде проникающей среде. Теория, предложенная Гюйгенсом, объяснила дифракцию и интерференцию, но не смогла дать объяснение прямолинейному распространению света. Примечание 1 В течение долго времени не было единого представления о природе света. Корпускулярные теории менялись на волновые. Ни одна теория не могла стать единственной, принятой всеми. В семидесятых годах XIX века Максвелл изложил свою электромагнитную теорию. Показал, что свет является электромагнитной волной, что было подтверждено опытами. Свет стали считать электромагнитной волной. Волновая теория стала считаться доказанной окончательно.

Однако волновая теория света в ее электромагнитной форме стала недостаточной для толкования всех оптических явлений. Впервые это проявилось при исследовании проблем равновесного (абсолютно черного) излучения. Формулу, которая согласовывается с опытом для всего диапазона волн, предложил М. Планк на основе новых, квантовых представлений. Изначально они касались только природы света, но позднее проникли во все разделы физики. Оказалось, что представления классической физики, которые базируются на основе понятий, связанных с макроскопическими объектами, не применимы или используются с существенными ограничениями в области атомных масштабов. Идеи Планка легли в основу новой физики, квантовой физики. Так Планк предположил, что излучение и поглощение света веществом происходит конечными порциями -- квантами. Согласовывая свою гипотезу с законами термодинамики и электродинамики, Планк принял энергию кванта равной:где h=Джс6,63⋅10−34Дж⋅с -- постояннаяПланка. СамПланкполагал, чтоквантовыесвойствасветпроявляеттольковактахизлученияипоглощениясвета. Всеостальноепроисходитврамкахтеории Максвелла. Определение 2 Эйнштейн развил квантовую теорию. Он заключил, что и при распространении в пространстве свет ведет себя как совокупность частиц (фотонов), имеющих энергию, которая определяется выражением (1). Это было не простым возвратом к Ньютоновской теории корпускул, так как фотоны принципиально отличаются от частиц в механике. Фотоны имеют волновые свойства. Эта особенность фотонов и называется корпускулярно -- волновым дуализмом.
Корпускулярно-волновой дуа­лизм

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ, фундаментальное свойство природы, являющееся физической основой квантовой механики и заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные, и волновые свойства. Любая волна обладает дискретными значениями энергии и импульса, кратными элементарным порциям (квантам) энергии ξ и импульса р, равными

ξ = ħω, р = ħk,(*)

где ħ - универсальная величина размерности действия, названная Планка постоянной, ω - циклическая частота волны, k - её волновой вектор. Движение любой частицы с энергией ξ и импульсом р связано с волной, частота и волновой вектор которой определяются соотношением (*).

Впервые корпускулярно-волновой дуализм был установлен для света. Выполненные к концу 19 века опыты по интерференции, дифракции и поляризации света, казалось, однозначно свидетельствовали о его волновой природе и доказывали, что свет, в согласии с теорией Максвелла, представляет собой электромагнитные волны. Однако в 1900 году М. Планк показал, что для объяснения законов равновесного теплового излучения необходимо принять гипотезу о дискретном характере излучения квантами с энергией, определяемой соотношением (*). Планк использовал для кванта энергии соотношение ξ = hν, но впоследствии выяснилось, что вместо частоты ν и постоянной h удобнее пользоваться циклической частотой ω = 2πν и постоянной h = h/2π. В 1905 году А. Эйнштейн, исходя из Вина закона излучения, показал, что в области больших частот излучение ведёт себя так, как если бы оно состояло из независимых квантов энергии, и объяснил на этой основе законы фотоэффекта. В 1909 Й. Штарк указал, что квант энергии излучения, движущийся со скоростью света с, должен обладать импульсом р = (ħω/с)n, т. е. должен вести себя как частица (здесь n - единичный вектор вдоль направления движения частицы). Этот факт подтвердился после открытия Комптона эффекта (1922) и таким образом была окончательно установлена двойственная природа света.

В наиболее отчётливой форме наличие корпускулярно-волнового дуализма для света было выявлено в 1909 году А. Эйнштейном, показавшим, что закон излучения Планка приводит к тому, что флуктуация энергии излучения содержит два члена, один из которых описывает флуктуации для совокупности классических световых волн, а второй - флуктуации энергии газа, состоящего из независимых частиц.

Для установления всеобщего характера корпускулярно-волнового дуализма решающее значение имело изучение законов движения электронов в атоме. В 1913 году Н. Бор использовал постоянную Планка для определения стационарных состояний в атоме водорода. При этом ему удалось объяснить наблюдаемые на опыте спектральные закономерности и выразить через заряд электрона, его массу и постоянную Планка радиус атома и Ридберга постоянную, оказавшиеся в хорошем согласии с экспериментальными данными. Способ определения стационарных состояний электронов в атомах был усовершенствован А. Зоммерфельдом, показавшим, что для стационарных орбит классическое действие является целым, кратным 2πh.

Успех теории Бора, объяснившей атомные явления на основе квантовых представлений и постоянной Планка (которая до этого, казалось, связывала лишь корпускулярные и волновые характеристики электромагнитного излучения), навёл на мысль о существовании корпускулярно-волнового дуализма и для электронов. В связи с этим Л. де Бройль в 1923 году высказал гипотезу о всеобщем характере корпускулярно-волнового дуализма. Согласно этой гипотезе, не только электромагнитным волнам соответствуют частицы, но и частицам (например, электронам) должны соответствовать волны. Де Бройль отметил релятивистскую инвариантность соотношения (*), связывающего четырёхмерный вектор энергии-импульса частицы (ξ/с, р) с четырёхмерным волновым вектором (ω/с, k), и высказал предположение о том, что волновая механика частиц должна находиться в таком же соотношении с классической механикой, как волновая оптика с геометрической оптикой. Невозможность описать волновые явления (например, интерференцию) с помощью частиц, движущихся по определённым траекториям, была преодолена в квантовой механике на основе суперпозиции состояний принципа и его статистической интерпретации.

Прямое доказательство существования волновых свойств электронов впервые получили в 1927 году американские физики К. Дэвиссон и Л. Джермер, которые наблюдали интерференционные максимумы при отражении электронов от монокристаллов никеля. Позднее интерференционные эффекты были обнаружены для пучков атомов гелия, молекул водорода и других частиц, то есть универсальность корпускулярно-волнового дуализма была подтверждена экспериментально.

В явном виде корпускулярно-волновой дуализм присутствует в квантовой теории поля, где частицы (и квазичастицы) представляют собой возбуждённые состояния полей.

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю. Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона , установленных опытным путем:· закон прямолинейного распространения света;· закон независимости световых лучей;· закон отражения;· закон преломления света.Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса .Каждая точка, до которой доходит световое возбуждение, является , в свою очередь, центром вторичных волн ; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления .Закон прямолинейного распространения света свет в оптически однородной среде распространяется прямолинейно .Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.Рис 7.1Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны , когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков эффект, производимый отдельным пучком, не зависит от того , действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.Закон отражения (рис. 7.3):· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром , проведенным к границе раздела двух сред в точке падения угол падения α равен углу отражения γ: α = γ

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ с , падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А , эта точка начнет излучать вторичную волну .· Для прохождения волной расстояния ВС требуется время Δt = BC / υ . За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υ Δt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения : угол падения α равен углу отражения γ. Закон преломления (закон Снелиуса ) (рис. 7.5):· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; · отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред .

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ ), распространяющаяся в вакууме вдоль направления I со скоростью с , падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).Пусть время, затрачиваемое волной для прохождения пути ВС , равно Dt . Тогда ВС = с Dt . За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u , достигнет точек полусферы, радиус которой AD = u Dt . Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление ее распространения – лучом III. Из рис. 7.6 видно, что , т.е. .Отсюда следует закон Снелиуса : .Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.Согласно принципу Ферма , свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время . Покажем применение этого принципа к решению той же задачи о преломлении света.Луч от источника света S , расположенного в вакууме идет до точки В , расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB . Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB : .Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю: ,отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).Из принципа Ферма вытекает несколько следствий.Обратимость световых лучей : если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I. Другой пример – мираж , который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной) ( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а ).

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б , в ), до тех пор, пока при некотором угле падения () угол преломления не окажется равным π/2.Угол называется предельным углом . При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г ). · По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г ). · Таким образом , при углах падения в пределах от до π/2 , луч не преломляется , а полностью отражается в первую среду , причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением. Предельный угол определим из формулы: ; .Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.На рис. 7.9 показаны призмы полного отражения, позволяющие:а) повернуть луч на 90°;б) повернуть изображение;в) обернуть лучи.Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах , представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.Рис. 7.10В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного , претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.Световоды используются при создании телеграфно-телефонных кабелей большой емкости . Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно.

Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0 (исчезающе малой длине волны). Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым Виллебрордом Снелиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

n = n 2 / n 1 .

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления - это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

Геометрическая оптика

Геометри́ческая о́птика - раздел оптики , изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Краеугольным приближением геометрической оптики является понятие светового луча . В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция , в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция . Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике . В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.

Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.

Законы геометрической оптики

В основе геометрической оптики лежат несколько простых эмпирических законов:

  1. Закон преломления света (Закон Снелла)
  2. Закон обратимости светового луча. Согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости , создаваемые ими, складываются.

Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала , которое допускает также словесную интерпретацию в виде принципа Ферма , из которого и выводятся перечисленные выше законы.

Частным видом геометрической оптики является матричная оптика .

Разделы геометрической оптики

Среди разделов геометрической оптики стоит отметить

  • расчёт оптических систем в параксиальном приближении
  • распространение света вне параксиального приближения, формирование каустик и прочих особенностей световых фронтов.
  • распространение света в неоднородных и неизотропных средах (градиентная оптика)
  • распространение света в волноводах и оптоволокне
  • распространение света в гравитационных полях массивных астрофизических объектов, гравитационное линзирование .

История исследований


Wikimedia Foundation . 2010 .

  • Дюнкерк
  • Арамейское письмо

Смотреть что такое "Геометрическая оптика" в других словарях:

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в к ром изучаются законы распространения оптического излучения (света) на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль к рой распространяется поток световой энергии. Понятием луча можно… … Физическая энциклопедия

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА Современная энциклопедия

    Геометрическая оптика - ГЕОМЕТРИЧЕСКАЯ ОПТИКА, раздел оптики, в котором распространение света в прозрачных средах описывается с помощью представления о световых лучах, а волновые и квантовые свойства не учитываются. Основные законы геометрической оптики отражения света… … Иллюстрированный энциклопедический словарь

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчетов… … Большой Энциклопедический словарь

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел физики, в котором изучаются законы распространения (см.) в прозрачных средах на основе его прямолинейного распространения в однородной среде, отражения и преломления. Результаты, к которым приводит Г. о., часто бывают достаточными и… … Большая политехническая энциклопедия

    геометрическая оптика - geometrinė optika statusas T sritis fizika atitikmenys: angl. geometrical optics; ray optics vok. geometrische Optik, f; Strahlenoptik, f rus. геометрическая оптика, f; лучевая оптика, f pranc. optique géométrique, f … Fizikos terminų žodynas

    геометрическая оптика - раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчётов… … Энциклопедический словарь

    Геометрическая оптика - раздел оптики (См. Оптика), в котором изучаются законы распространения света на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль которой распространяется поток световой энергии. Понятие луча не противоречит… … Большая советская энциклопедия

    геометрическая оптика - ▲ распространение луч света преломление. лучепреломление. преломить, ся. аберрация. астигматизм. дисторсия. кома. каустика, каустическая поверхность. фокус. фокальный. диоптрия. диоптрика. увеличительный (# линза). < > уменьшительный.… … Идеографический словарь русского языка

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в к ром законы распространения света в прозрачных средах рассматриваются на основе представлений о световых лучах линиях, вдоль к рых распространяется световая энергия. Г. о. предельный случай волновой оптики при Лямбда > 0, где… … Большой энциклопедический политехнический словарь

Все законы геометрической оптики следуют из закона сохранения энергии. Все эти законы не являются независимыми друг от друга.

4.3.1. Закон независимого распространения лучей

Если через точку пространства проходит несколько лучей, то каждый луч ведет себя так, как если бы других лучей не было

Это справедливо для линейной оптики, где показатель преломления не зависит от амплитуды и интенсивности проходящего света.

4.3.2. Закон обратимости

Траектория и длина хода лучей не зависят от направления распространения.

То есть, если луч, который распространяется от точки до точки , пустить в обратном ходе (от к ), то он будет иметь такую же траекторию, как и в прямом.

4.3.3. Закон прямолинейного распространения

В однородной среде лучи - прямые линии (см. параграф 4.2.1).

4.3.4. Закон преломления и отражения

Закон отражения и преломления подробно рассматривается в Главе 3. В рамках геометрической оптики формулировки законов преломления и отражения сохраняются.

4.3.5. Принцип таутохронизма


Рис.4.3.1. Принцип таутохронизма.

Рассмотрим распространение света, как распространение волновых фронтов (рис.4.3.1).

Оптическая длина любого луча между двумя волновыми фронтами одна и та же:

(4.3.1)

Волновые фронты - поверхности, которые оптически параллельны друг другу. Это справедливо и для распространения волновых фронтов в неоднородных средах

4.3.6. Принцип Ферма

Пусть имеются две точки и , расположенные, возможно, в различных средах. Эти точки можно соединить между собой различными линиями. Среди этих линий будет только одна, которая будет являться оптическим лучом, который распространяется в соответствии с законами геометрической оптики (рис.4.3.2).

Рис.4.3.2. Принцип Ферма.

Принцип Ферма:

Оптическая длина луча между двумя точками минимальна по сравнению со всеми другими линиями, соединяющими эти две точки:

(4.3.2)

Существует более полная формулировка:

Оптическая длина луча между двумя точками является стационарной по отношению к смещению этой линии.

Луч - кратчайшее расстояние между двумя точками. Если линия, вдоль которой мы измеряем расстояние между двумя точками, отличается от луча на величину 1-го порядка малости, то оптическая длина этой линии отличается от оптической длины луча на величину 2-го порядка малости.

Если оптическую длину луча, соединяющего две точки, поделить на скорость света, то получим время, необходимое на преодоление расстояния между двумя точками:

Еще одна формулировка принципа Ферма:

Луч, соединяющий две точки, идет по такому пути, который требует наименьшего времени (по самому быстрому пути).

Из этого принципа могут быть выведены законы преломления, отражения и т.д.

4.3.7 Закон Малюса-Дюпена

Нормальная конгруэнция сохраняет свойства нормальной конгруэнции в процессе прохождения через различные среды.

4.3.8 Инварианты

Инварианты (от слова неизменный) - это соотношения, выражения, которые сохраняют свой вид при изменении каких-либо условий, например, при прохождении света через различные среды или системы.

Интегральный инвариант Лагранжа

Пусть имеется некоторая нормальная конгруэнция (пучок лучей), и две произвольные точки в пространстве и (рис.4.3.4). Соединим эти две точки произвольной линией и найдем криволинейный интеграл.

(4.3.4)
Криволинейный интеграл (4.3.3), взятый между двумя любыми точками и не зависит от пути интегрирования.

Рис.4.3.3. Интегральный инвариант Лагранжа.

Дифференциальный инвариант Лагранжа

Луч в пространстве полностью описывается радиус-вектором , который содержит три линейные координаты , и оптическим вектором , который содержит три угловые координаты . Всего, таким образом, имеется 6 параметров для определения некоторого луча в пространстве. Однако из этих 6 параметров только 4 являются независимыми, так как можно получить два уравнения, которые связывают параметры луча друг с другом.

Первое уравнение определяется длину оптического вектора:

Где - показатель преломления среды.

Второе уравнение вытекает из условия ортогональности векторов и :

Из выражений (4.3.5) и (4.3.6), воспользовавшись аналитической геометрией, можно вывести следующее соотношение:

(4.3.7)
где и - это пара любых из 6-ти параметров луча.

Дифференциальный инвариант Лагранжа:
Величина сохраняет свое значение для данного луча при распространении пучка лучей через любую совокупность оптических сред.

Геометрический фактор остается инвариантным при распространении лучевой трубки через любую последовательность различных сред (рис.4.3.5).

Инвариант Штраубеля выражает закон сохранения энергии, так как он показывает неизменность лучистого потока.

Из определения яркости можно получить следующее равенство:

(4.3.9) где - приведенная яркость, которая инвариантна, как уже было сказано в главе 2.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса