Подпишись и читай
самые интересные
статьи первым!

Электродные потенциалы. Измерение электродных потенциалов

ЛЕКЦИЯ 5

Электрохимия раздел физической химии, в котором изучают объемные и поверхностные свойства конденсированных тел, содержащих подвижные ионы, а также механизмы процессов с участием ионов на границе раздела и в объеме тел.

Электрохимические процессы – это химические процессы, сопровождающиеся появлением электрического тока или вызываемые подведенной извне электрической энергией. В их основе лежат окислительно-восстановительные реакции. В электрохимических реакциях (в отличие от обычных окислительно-восстановительных) процессы окисления и восстановления являются пространственно разобщенными. Каждый из этих процессов протекает на поверхности своего электрода, поэтому их называют электродными процессами.

Электрод часть проводника (обыкновенно в виде пластинки), через которую электрический ток вводится в жидкость или газ. Положительный электрод – анод, отрицательный электрод – катод.

Из электродов и электролита может быть составлена система, в которой химическая энергия окислительно-восстановительных процессов превращается в электрическую энергию. Такую систему называют гальваническим элементом (названного в честь Луиджи Гальвани) . Сила, обусловливающая перемещение в ней электрических зарядов, называется электродвижущей силой (ЭДС ). Электродвижущие силы принято представлять в виде разности двух потенциалов, каждый из которых отвечает полуреакции, протекающей на одном из электродов:

Е = j 1 – j 2 .

Потенциалы на электродах j 1 и j 2 называют электродными потенциалами.

Электродные потенциалы возникают вследствие взаимодействия металла с электролитом. При погружении металлического электрода в водный раствор его соли между поверхностью электрода и раствором будет происходить процесс обмена. Кристаллическая решетка металла состоит из положительно заряженных ионов (катионы) и свободных валентных электронов. При погружении металла в водный раствор его соли полярные молекулы воды, взаимодействуя с катионами металлической решетки (гидратация), облегчают переход катионов металла в раствор. Благодаря гидратации переход ионов в раствор (процесс ионизации) становится энергетически выгодным:

Me + Н 2 О ® Me n + Н 2 О + ne,

где Мe – металл, (Me n + × Н 2 О) – гидратированный катион металла;

n – валентность металла;

е – электрон.

Этот процесс нарушает первоначальную электронейтральность металла и раствора: металл заряжается отрицательно, а слой электролита около него – положительно.

Одновременно в растворе всегда возможен обратный процесс – осаждение металла:

Me n + × Н 2 О + ne ® Me + Н 2 О.

Когда скорости ионизации и осаждения сравняются, процесс обмена между металлом и электролитом достигнет состояния равновесия:



Me + aq ® Me n+ × aq + ne.

Процесс обмена приводит к образованию на границе металл-электролит двойного электрическогослоя (рисунок 5.1), т. е. к разделению электрических зарядов.

Рисунок 5.1 - Схема двойного электрического слоя и распределение потенциала по его толщине. Металл заряжается отрицательно (а ) и положительно (б ) в процессе возникновения электродного потенциала. i 1 и i 2 – плотная и диффузная части двойного электрического слоя

Отрицательные и положительные заряды на границе металл – раствор электролита обусловливают возникновение в пограничной области скачка потенциалов, представляющего собой электродный потенциал. Потенциал электрода – физическая величина, зависящая от природы металла и электролита, которая характеризует окислительно-восстановительный процесс. Электродный потенциал измеряют, сравнивая с другим электродным потенциалом, величину которого условно принимают за нуль. Роль электрода, потенциал которого считается равным нулю, выполняет так называемый стандартный водородный электрод .

Электродный потенциал, измеренный в стандартных условиях (Т = 293 К, р = 101,3 кПа (760 мм рт. ст.), С = 1 моль/л) в сравнении с водородным электродом, называют стандартным электродным потенциалом и обозначают Е 0 . По величине Е 0 все металлы можно расположить в ряд, называемый рядом напряжений металлов или электрохимическим рядом напряжения металлов (таблица 5.1).

Электрохимический ряд напряжений характеризует свойства металлов в водных растворах:

1) чем меньше электродный потенциал металла, тем легче он окисляется и труднее восстанавливается;

2) металлы, имеющие отрицательные электродные потенциалы, т. е. стоящие в ряду напряжений левее водорода, способны вытеснять его из разбавленных растворов кислот;

3) каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые имеют более высокий электродный потенциал.

Таблица 5.1 – Ряд напряжения металлов

Металл E o , В Металл E o , В
Li + / Li – 3,045 Ga 3+ / Ga – 0,560
Rb + / Rb – 2,925 Fe 2+ / Fe – 0,441
K + / K – 2,924 Cd 2+ / Cd – 0,404
Cs + / Cs – 2,923 In 3+ / In – 0,338
Ra 2+ / Ra – 2,916 Co 2+ / Co – 0,277
Ba 2+ / Ba – 2,905 Ni 2+ / Ni – 0,234
Sr 2+ / Sr – 2,888 Sn 2+ / Sn – 0,141
Ca 2+ / Ca – 2,864 Pb 2+ / Pb – 0,126
Na + / Na – 2,771 H + / H 2 ± 0,000
Ac 3+ / Ac – 2,600 Sb III / Sb + 0,240
La 3+ / La – 2,522 Re III / Re + 0,300
Y 3+ / Y – 2,372 Bi III / Bi + 0,317
Mg 2+ / Mg – 2,370 Cu 2+ / Cu + 0,338
Sc 3+ / Sc – 2,077 Hg 2 2+ / Hg + 0,796
Be 2+ / Be – 1,847 Ag + / Ag + 0,799
Al 3+ / Al – 1,700 Rh 3+ / Rh + 0,800
Ti 3+ / Ti – 1,208 Pd 2+ / Pd + 0,915
Mn 2+ / Mn – 1,192 Pt II / Pt + 0,963
Cr 2+ / Cr – 0,852 Au + / Au + 1,691
Zn 2+ / Zn –0,763

Электродный потенциал окислительно-восстановительной системы, находящейся в нестандартных условиях можно рассчитать по уравнению Нернста (предложено в 1906 г. немецким физиком и химиком, Нобелевским лауреатом В. Нернстом):

,

где Е – равновесный потенциал окислительно-восстановительного электрода, B ;

E 0 – стандартный потенциал этого электрода, B ;

R – универсальная газовая постоянная, равная 8,314 Дж/(моль×град);

Т – температура, K;

n – число электронов в уравнении электродной реакции;

F – число Фарадея, равное 96485 Кл/моль; [ox ] и [red ] – концентрации окисленной и восстановленной форм участников в электродной реакции.

Другая форма уравнения Нернста:

,

где n – валентность катиона;

С – концентрация электролита (С = [ox ] / [red ]).

Для водородного электрода уравнение Нернста имеет вид:

Гальванический элемент состоит из двух полуэлементов (окислительно-восстановительных систем), соединенных между собой металлическим проводником. На рисунке 5.2 показан элемент, состоящий из двух металлических электродов (Zn и Cu), опущенных в растворы их солей (ZnSO 4 и CuSO 4). На каждом полуэлементе (в данном случае Zn/ZnSO 4 и Cu/CuSO 4) происходит полуреакция (электродный процесс). Ток во внешней цепи будет протекать до тех пор, пока на электродах будут идти процессы обмена, обусловливающие установление на электродах свойственных им электродных потенциалов.

При разомкнутой цепи (так называемый режим «холостого хода») на электродах в результате процессов обмена устанавливаются равновесия, которым в стандартных условиях соответствуют стандартные потенциалы:

Zn ® Zn 2+ + 2e, E 0 Zn/Zn2+ = -0,76 B;

Cu ® Cu 2+ + 2e, E 0 Cu/Cu2+ = + 0,34 B.

При замыкании электрической цепи электроны от электрода с меньшим потенциалом (т. е. цинкового) будут переходить к электроду с большим потенциалом (медному). На электродах будут проходить следующие изменения. Уход электронов от цинкового электрода приводит к нарушению равновесия, и его электродный потенциал должен был бы измениться. Однако пока существует электрохимическая система Zn/Zn 2+ , будут сохраняться и все свойства, присущие ей, в том числе и соответствующий электродный потенциал. Несмотря на ушедшие к медному электроду электроны, потенциал цинкового электрода будет поддерживаться за счет протекания процесса Zn ® Zn 2+ + 2е(окисление), т. е. за счет разрушения цинка и перехода ионов Zn 2+ в раствор. Таким образом, уход электронов во внешнюю цепь компенсируется появлением новых электронов за счет окисления цинка. Электрод, на котором протекает процесс окисления, называется анодом.

Электроны, перешедшие по внешней цепи на медь, также должны нарушить первоначальное состояние равновесия. Однако пока существует электрод Cu/Cu 2 + , на нем будет поддерживаться и соответствующий потенциал. Это возможно только в том случае, если поступившие к меди электроны израсходуются в ходе процесса, потребляющего электроны. Таким процессом является процесс восстановления ионов меди: Cu 2+ + 2е ® Cu. Электрод, на котором протекает реакция восстановления, называют катодом.

Суммируя анодную (окисление) и катодную (восстановление) реакции, получим уравнение окислительно-восстановительного процесса:

Zn + Cu 2+ ® Cu + Zn 2+ .

Самопроизвольное протекание этого процесса обусловливает работу гальванического элемента. В любой окислительно-восстановительной реакции процессы окисления и восстановления протекают одновременно и взаимосвязано. В гальваническом элементе эти процессы пространственно разделены, но взаимозависимы: электроны процесса окисления анода участвуют в процессе восстановления на катоде.

Таким образом, в любом химическом источнике электрической энергии электрический ток – это результат самопроизвольного протекания окислительно-восстановительных реакций на электродах. Для расчета ЭДС гальванического элемента следует из потенциала медного электрода вычесть потенциал цинкового электрода, т. е.

DЕ 0 = Е 0 К – Е 0 А = Е 0 Cu / Cu 2+ – E 0 Zn / Zn 2+ = 0,34 – (– 0,76) = 1,1 В.

Итак, любому самопроизвольно протекающему окислительно-восстановительному процессу отвечает положительная ЭДС.

Окислительно-восстановительные цепи в водных растворах могут образовываться самопроизвольно при простом смешении веществ в растворах. С помощью электрохимического ряда напряжений можно установить, какие вещества в системе будут окисляться, а какие восстанавливаться. Стандартные окислительно-восстановительные потенциалы позволяют определить возможность сосуществования тех или других веществ в данной среде. Например, в воде в присутствии растворенного кислорода могут находиться сероводород, сульфиты и другие вещества с меньшими окислительно-восстановительными потенциалами.

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.


Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Степень окисления.Типичные окислители и восстановители

Степень окисления - это условный заряд атома в молекуле, вычисленный

исходя из предположения, что молекула состоит из ионов

и в целом электронейтральна. Вещество, которое принимает электроны, называется окислителем,а вещество, которое отдает электроны, - восстановителем. Вещества, являющиеся окислителями во многих реакциях, представляют собой типичные (сильные) окислители. К ним относятся F 2 , Cl 2 , O 2 , KClO 3 , H 2 SO 4 , HNO 3 , KMnO 4 , MnO 2 , K 2 Cr 2 O 7 , PbO 2 и др. Типичными (сильными) восстановителями являются H 2 , C (графит ), Zn, Al, Ca, KI, HCl (конц.), H 2 S, CO и др.

Реакции окисления-восстановления. Метод электронного баланса. Молярные массы эквивалентов окислителей и востановителей

Число электронов, отдаваемых восстановителем, равно числу электронов, принимаемых окислителем, поэтому стехиометрические коэффициенты окислительно-восстановительных реакций определяют используя метод электронного баланса или метод электронно-ионного баланса.

Порядок составления уравнений окислительно-восстановительных

реакций (метод электронного баланса):

1. Написать формулы исходных веществ и продуктов реакций.

2. Определить элементы, которые меняют свою степень окисления.

3. Составить две полуреакции для окислителя и восстановителя и

определить число принятых и отданных электронов.

4. Найти наименьшее общее кратное между числом принятых и

отданных электронов и определить дополнительные множители к

обеим полуреакциям.

5. Умножить дополнительные множители на соответствующие

полуреакции и сложить их левые и правые части. Полученные коэффициенты

перенести в молекулярное уравнение.

6. Если окислитель или восстановитель расходуется на получение

других продуктов реакции, в которых степень их окисления не

меняется, то необходимо уточнить коэффициенты.

7. Уравнять число атомов водорода и кислорода.

Молярная масса эквивалентов окислителя равна молярной массе

окислителя, деленной на число электронов, принятых одной молекулой

окислителя. Молярная масса эквивалента восстановителя

равна молярной массе восстановителя, деленной на число электронов,

отданных одной молекулой восстановителя.

Направление протекания и константа равновесия окислително восстановительных реакций

Расчеты с применением уравнения Нернста, позволяющего найти константу равновесия ОВР, и закона действующих масс показывают, что реакции заведомо химически необратимы при Δφ о > 0,4.
В этом случае реакция всегда, т.е. при любых начальных условиях (о стандартных условиях теперь речь, разумеется, не идет), проходит в прямом направлении до конца.
Совершенно аналогичным образом, если Δφ о < – 0,4 В, реакция всегда протекает до конца, но в обратном направлении.
Изменять направление и полноту протекания таких реакций, т.е. управлять ими, при всем желании невозможно, в отличие от химически обратимых реакций, для которых < Δφ о < 0,4 В или –0,4 В < Δφ о < 0. В первом случае в стандартных условиях реакция всегда протекает в прямом направлении. Это означает, что в отсутствие продуктов реакции в начальный момент времени реакция тем более (т.е. тоже всегда) будет протекать в прямом направлении, но не до конца.
Более полному протеканию реакции способствуют избыток одного или нескольких реагентов и вывод из сферы реакции тем или иным способом ее продуктов. Часто удается добиться достаточно полного протекания таких реакций несмотря на их химическую обратимость. С другой стороны, обычно можно также создать условия, при которых такая реакция будет протекать в обратном направлении. Для этого надо создать высокие концентрации "реагентов" (до сих пор мы считали их продуктами реакции), начинать реакцию в отсутствии ее "продуктов" (т.е. реагентов, при прямом течении реакции) и стараться поддерживать по возможности низкую их концентрацию в ходе реакции.

электродный потенциал. Его измерение, стандартный электродный потенциал

Электро́дный потенциа́л - разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) - ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.

Практическое значение имеют относительные электродные потенциалы, обычно называемые просто электродные потенциалы, представляющие собой разность электродных потенциалов рассматриваемого электрода и электрода сравнения - чаще всего нормального водородного электрода, электродный потенциал которого условно принимается равным нулю

В электрохимии стандартный электродный потенциал, обозначаемый E o , E 0 , или E O , является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей).

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: большой отрицательный потенциал означает, что данная форма является сильным восстановителем.

5.ряд стандартых потенциаловметаллических электродов. Зависимость значения электродного потенциала …

Если электроды (на пример, металлические электроды 1-го рода) расположить в порядке возрастания потенциала, то мы получим таблицу, называемую рядом стандартных электродных потенциалов. Этот ряд часто называют рядом напряжений, однако этот термин устарел и его лучше не использовать. При помощи ряда стандартных электродных потенциалов можно характеризовать некоторые химические свойства металлов. Например, его применяют для выяснения, в какой последовательности восстанавливаются ионы металлов при электролизе, а также при описании других свойств металлов.
Чем меньше алгебраическая величина потенциала, тем выше вос­становительная способностьэтого металла и тем ниже окислительная способность его ионов.

Зависимость электродного потенциала от концентраций дает уравнение Нернста:

E= E o + lg

6.гальван. элем. , напряж ГЭ, совр. ГЭ

Гальваническими элементами (ГЭ) называются устройства, в которых

энергия окислительно-восстановительных реакций превращается

в электрическую энергию. Гальванический элемент состоит

из двух электродов (окислительно-восстановительных систем), соединенных

между собой металлическим проводником.

Напряжение ГЭ (е°) при стандартных условиях рассчитывается

по формуле

e = Ф катода – Ф анода

где ф°катода и ф ° а нонода - значения стандартных электродных потенциалов

катода и анода

7. Аккумуляторы (щелочные и кислотные)…

Аккумуляторы-источники Эл-кой энергии многократного действия. Они относятся к обратимым гальваническим Эл-там.Аккумуляторы –состоят из батарей (ЭДС 2,1ВТ-мах) . Акк.-бывают щелочные и кислотные.Как источники Эл-кой энергии они работают в режиме галв э-та.Для восстановления Акк-ра он работает в режиме зл-за т.е. зарядки. Качество Акк можно оценить по концентрации H2SO4. При зарядке выделяется H2 H2 соед-ся с O2 и получается гремучая смесь.

Коррозия..

Коррозией называется процесс самопроизвольного разрушения

металлов под действием агрессивных сред. Химическая коррозия представляет собой разрушение металлов

вследствие непосредственного их взаимодействия с сухими агрессивными

газами 02 , СО2, SO2, H2S, NH3, Н 2 0 (газовая коррозия) или

с агрессивными компонентами в жидких неэлектролитах, например

в нефтепродуктах (коррозия в неэлектролитах).

При контакте металла с водой, растворами электролитов, влажными

газами наблюдается электрохимическая коррозия - наиболее

распространенный вид коррозии металлов.

Показатели коррозии

Количественно скорость коррозии характеризуется следующими

показателями коррозии:

Весовой показатель

Объемный показатель

Глубинный показатель

Современная защита металлов от коррозии базируется на следующих методах:

1. повышение химического сопротивления конструкционных материалов,

2. изоляция поверхности металла от агрессивной среды,

3. понижение агрессивности производственной среды,

4. снижение коррозии наложением внешнего тока (электрохимическая защита).

10. Электролиз…

Электролиз - совокупность окислительно-восстановительных

процессов, протекающих при прохождении постоянного электрического

тока через расплавы или растворы электролитов.

При электролизе происходит превращение электрической энергии

в химическую. Ячейка для электролиза (электролизер) состоит

из двух электродов, погруженных в расплав или раствор электролита.

Электрод, на котором идет реакция восстановления (катод), подключен

к отрицательному полюсу внешнего источника постоянного

тока. Электрод, на котором протекает реакция окисления (анод),

подключен к положительному полюсу постоянного источника тока.

Количественная характеристика электролиза выражается двумя

законами Фарадея:

1. При электролизе различных химических соединений равные

количества электричества выделяют на электродах массы веществ,

пропорциональные молярным массам их эквивалентов.

2. Масса вещества, выделяющегося на электродах или разлагающегося

при электролизе, прямо пропорциональна количеству

прошедшего через электролит электричества.

Поляризация электродов-это отклонение потенциала электрода от равновестного значения.

Перенапряжение - любое увеличение напряжённости электрического поля, в какой-либо части установки или линии электропередачи, достигающее величины, опасной для состояния изоляции установки.

11. последовательность электродных процессов…

Электролизом называется совокупность процессов, протекающих при прохождении постоянного электрического тока через систему, состоящую из двух электродов и расплава или раствора электролита.Электрод, на котором при электролизе происходит восстановление, называется катодом, а электрод, на котором осуществляется процесс окисления-анодом. Если система, в которой проводят электролиз, содержит различные окислители, то на катоде будет восстанавливаться наиболее активный из них.При Эл-зе также выдел-ся мол-лы воды.Из нескольких возможных окисл-вост. процессов на катоде и аноде идет процесс с меньший затратой энергии.Процесс э-за записв в виде схем NaClаNa++Cl- K(-)Na++e=Na A(+)2Cl-2e =Cl2

12. Законы фарадея…

Количественная характеристика процессов электролиза определяется законами, установленными Фарадеем.При Эл-зе разложение хим-х соед-й равное кол-во Электр-ва выделяется на электродах массы в-в пропорц-ны молярным массам их эквивал-ов nэк(анод)=nэк(катод) q=It I-сила тока А t-время сек закон Фарадея Массы в-ва выдел-ся на Эл-дах или разлагающихся при эл-зе,пропорц-ны кол-ву прошедшего через элект-т электричества mтеор=MэкIt/F V=VMэкIt/F (Vo2=5.6,VСl2=VH2=11.2л/моль) m-масса образовавшегося или подвергшегося превращению вещества; Мэк-его эквивалентная масса г/моль; I- сила тока А;t-время сек; F-постоянная Фарадея (96500 Кл/моль), аоксиды, карбиды,сульфиды,галнды.От индивидуальности Ме,от внешних условий эти реакции протекают по разному чем акт-е Ме тем больше разница в электроотр Ме и Окисл ΔЕ=EOме-EOокисл тем более активней протекает реа-ция.С водой реагируют только Ме гидроксиды которых растворимы в воде и имеют отр-ное значение Электр-го потан-ла.2Na+2H2O=2NaOH+H2 2Fe+3H2O=Fe2O3 +3H2.Со щелочами ме гидрооксиды которых растворимы в щелочах. Zn(OH)2+2NaOH=Na2.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

) (чаще всего между металлом и раствором электролита). Возникновение Э. п. обусловливается переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) - ориентационной адсорбцией их. Величина Э. п. в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз. Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически. Практическое значение имеют относительные Э. п., обычно называемые просто Э. п., представляющие собой разность Э. п. рассматриваемого электрода и электрода сравнения - чаще всего нормального водородного электрода (См. Водородный электрод), Э. п. которого условно принимается равным нулю.

При электрохимическом равновесии на электроде величина Э. п. (E ) может быть выражена через изменение гиббсовой энергии (См. Гиббсова энергия) (ΔG ) реакции: Е = - ΔG /zF , где z - число электронов, участвующих в электрохимическом процессе, F - Фарадея число . Э. п. в этом случае зависит от активности (а ) участвующих в реакции веществ (потенциалопределяющих веществ). Для электродов Me/Me n + Е = E 0 + (RT/zF ) ln a Me n+ , где R - газовая постоянная, Т - температура, E 0 - Нормальный потенциал . Для окислительно-восстановительных систем с инертным электродом, у которых все компоненты электрохимической реакции находятся в растворе, Э. п. (Окислительно-восстановительный потенциал) определяется активностями как окисленной (a ok), так и восстановленной (а в) форм вещества:

где ν - стехиометрический коэффициент.

В случае, когда на электроде возможно одновременное протекание более одной электродной реакции, используется понятие стационарного Э. п. При пропускании электрического тока измеренный Э. п. будет отличаться от равновесного на величину поляризации (см. Поляризация электрохимическая).

В. В. Городецкий.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электродный потенциал" в других словарях:

    ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ - разность электрических потенциалов (напряжений) между электродом и находящимся с ним в контакте электролитом. Появление Э. п. вызвано образованием у поверхности электрода двойного электрического слоя. На практике используют значения так… … Большая политехническая энциклопедия

    В электрохимии разность электрических потенциалов на границе фаз электрод электролит. На практике пользуются значениями т. н. относительного электродного потенциала, равного разности электродного потенциала, данного электрода и электрода… … Большой Энциклопедический словарь

    ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, мера способности электрода вступать в реакцию. Электрод из элемента М, помещенный в раствор его ионов (М+), представляет собой ПОЛУЭЛЕМЕНТ. Теоретически в ходе реакций типа ММ++е между электродом и раствором всегда… … Научно-технический энциклопедический словарь

    Электродный потенциал - мера способности электрода вступать в реакцию. Между электродом и раствором всегда образуется разность потенциалов. Стандартные потенциалы электродов определяют относительно водородного электрода при определенных величинах температуры,… … Официальная терминология

    электродный потенциал - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrode potentialelectrolytic potentialelectropolarization… … Справочник технического переводчика

    электродный потенциал - разность электрических потенциалов между электродами и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Практическое значение имеют относительные электродные потенциалы,… … Энциклопедический словарь по металлургии

    электродный потенциал - 3.8 электродный потенциал: Мера способности электрода вступать в реакцию. Между электродом и раствором всегда образуется разность потенциалов. Стандартные потенциалы электродов определяют относительно водородного электрода при определенных… … Словарь-справочник терминов нормативно-технической документации - elektrodo potencialas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas potencialų skirtumu, susidarančiu tarp joninės terpės (elektrolito tirpalo ar lydalo) ir į ją įdėto elektrodo. atitikmenys: angl. electrode… …

    электродный потенциал - elektrodo potencialas statusas T sritis Standartizacija ir metrologija apibrėžtis Elektrodo potencialas kito kūno arba terpės, kurioje jis yra, atžvilgiu. atitikmenys: angl. electrode potential vok. Elektrodenpotential, n rus. потенциал электрода … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Для определения направления и полноты протекания окислительно-восстановительных реакций между окислительно-восстановительными системами в водных растворах используются значения электродных потенциалов этих систем.

Механизм возникновения электродных потенциалов, их количественное определение, процессы, которые сопровождаются возникновением электрического тока или вызваны электрическим током, изучаются особым разделом химии – электрохимией.

К электрохимическим относятся явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов), например, при погружении металлической пластинки в воду.

Для всех металлов характерно свойство в большей или меньшей степени растворяться в воде. При этом в воду переходят положительно заряженные ионы металла, в результате чего пластинка (из-за появления в ней избыточных электронов) заряжается отрицательно. Гидратированные катионы металла скапливаются возле поверхности пластинки на границе раздела двух фаз (металл-раствор). Возникает двойной электрический слой, характеризующийся некоторой разностью электростатических потенциалов. Как известно, энергию, которую необходимо затратить (положительный потенциал) или которую можно получить (отрицательный потенциал) при переносе единицы электричества из бесконечности в данную точку, называют электрическим потенциалом. Между пластинкой и раствором устанавливается окислительно-восстановительное равновесие:

. (9.1)

При погружении металла в раствор его соли также возникает двойной

электрический слой, но в этом случае возможны два механизма его образования. Если концентрация катионов металла в растворе мала или металл довольно активный, вследствие чего равновесие процесса, указанного выше, сдвинуто вправо, то металлическая пластинка заряжается отрицательно:

В том случае, когда концентрация катионов металла в растворе велика или металл малоактивный, равновесие указанного процесса сдвигается влево и металлическая пластинка заряжается положительно:

В любом случае на границе раздела двух фаз образуется двойной электрический слой. Разность (скачок) потенциалов, возникающая между металлом и жидкой фазой, называется электродным потенциалом Е. Потенциалу металла приписывается тот знак, который возникает на его поверхности в двойном электрическом слое.

Пластинка металла и раствор его соли (т.е. катионы этого металла) вместе составляют единую окислительно-восстановительную систему, характеризующуюся определенным электродным потенциалом, который зависит от природы металла, концентрации его ионов в растворе, от температуры и рН среды.

При определении скачка потенциала в окислительно-восстановительных системах, не содержащих твердой фазы (например, MnO4-/Mn2+ или Cr2O72-/Cr3+), используют инертные электроды (благородные металлы, графит). В этом случае инертные электроды, адсорбируя из раствора молекулы, атомы или ионы, играют роль твердой фазы, обеспечивающей возникновение скачка потенциалов на межфазной границе.

Экспериментально определить абсолютное значение электродного потенциала невозможно. Поэтому на практике измеряется разность потенциалов между электродным потенциалом исследуемой системы и потенциалом электрода сравнения. В качестве стандартного электрода сравнения обычно используют водородный электрод. Он изготавливается из губчатой платины, погруженной в раствор H2SO4 c активностью ионов водорода, равной единице (что соответствует примерно их концентрации, равной 1 моль/л). Через раствор при 298 К (25 оС) под давлением в 101,325 кПа пропускается газообразный водород, который поглощается губчатой платиновой пластиной.

Рис.9.1 Гальваническая цепь для измерения электродного потенциала:

I – водородный электрод, II – солевой мостик, III – измеряемый электрод.

Таким образом, поверхность платинового электрода фактически насыщена водородом, в результате чего в системе устанавливается равновесие:

, (9.2)

которое характеризуется определенным значением скачка потенциала на межфазной границе. Электродный потенциал, отвечающий данным условиям, получил название стандартного водородного потенциала

, а его численное значение условно принято равным нулю. Потенциал водородного электрода воспроизводится с очень высокой точностью.

Сочетая электрод, представляющий исследуемую окислительно-восстановительную систему, со стандартным водородным электродом, определяют электродный потенциал Е данной системы. Для того, чтобы можно было сравнивать окислительно-восстановительные свойства различных систем по их электродным потенциалам, необходимо, чтобы последние также были измерены при стандартных условиях. Таковыми обычно являются концентрация ионов, равная 1 моль/л, давление газообразных веществ 101,325 кПа и температура 298,15 К. Потенциалы, измеренные в таких условиях, носят название стандартных электродных потенциалов и обозначаются Ео. Они часто называются также окислительно-восстановительными или редокс-потенциалами, представляя собой разность между редокс-потенциалом системы при стандартных условиях и потенциалом стандартного водородного электрода.

Знак конкретного Ео соответствует заряду электрода по отношению к стандартному водородному электроду.

Стандартный электродный потенциал – это потенциал данного электродного процесса при концентрациях всех участвующих в нем веществ, равных единице.

Стандартные электродные потенциалы окислительно-восстановительных систем приводятся в справочной литературе. Эти системы записаны в форме уравнений полуреакций восстановления, в левой части которых находятся атомы, ионы или молекулы, принимающие электроны (окисленная форма):

= Red. (9.3)

Эти системы в таблицах расположены в порядке возрастания величин их потенциалов, что соответствует падению восстановительной и росту окислительной активности. Система с большим электродным потенциалом всегда является окислителем по отношению к системе с меньшим потенциалом.

Выделяя из этого ряда окислительно-восстановительные системы типа Меn+/Me и располагая их в порядке возрастания стандартных электродных потенциалов, получают электрохимический ряд напряжений металлов: Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H2, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Электрохимический ряд напряжений характеризует свойства металлов в водных растворах:

чем меньше электродный потенциал металла, тем легче он окисляется и труднее восстанавливается из своих ионов;

металлы, имеющие отрицательные электродные потенциалы, т.е. стоящие в ряду напряжений левее водорода, способны вытеснять его из разбавленных растворов кислот;

каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые имеют более высокий электродный потенциал.

При условиях, отличающихся от стандартных, численное значение равновесного электродного потенциала для окислительно-восстановительной системы, записанной в форме

, определяется по уравнению Нернста: (9.4) и - соответственно электродный и стандартный потенциалы системы; R – универсальная газовая постоянная; Т – абсолютная температура; F – постоянная Фарадея; n – число электронов, участвующих в окислительно-восстановительном процессе.

С(Red) и C(Ox) – молярные концентрации соответственно восстановленной и окисленной форм соединения.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса